Объясняя мир. Истоки современной науки - [115]
18. Эллипсы
Эллипсом называется определенный вид замкнутой кривой на плоскости. Есть как минимум три различных способа дать определения этой кривой.
Определение первое
Эллипс – это множество точек на плоскости, координаты которых удовлетворяют уравнению:
Рис. 12. Элементы эллипса. Две точки, обозначенные внутри эллипса, называются его фокусами; a и b – большая и малая полуоси эллипса; расстояние от любого из фокусов до его центра равно ea. Сумма длин отрезков r>+ и r>−, соединяющих оба фокуса с произвольной точкой P на линии эллипса, постоянна и равна 2a. У изображенного здесь эллипса эксцентриситет e ≈ 0,8.
где x – расстояние от центра эллипса до любой точки на его линии вдоль одной оси координат, а y – расстояние до той же самой точки вдоль оси, перпендикулярной первой. a и b – положительные коэффициенты, характеризующие размер и форму эллипса, которые принято выбирать так, что a ≥ b. Для ясности можно считать, что x – горизонтальная, а y – вертикальная ось координат, хотя, разумеется, они могут быть расположены вдоль любых двух взаимно перпендикулярных направлений. Из уравнения (1) следует, что расстояние r = √(x² + y²) до любой точки на линии эллипса от его центра, расположенного в координатах x = 0, y = 0, удовлетворяет условиям
поэтому для любой точки эллипса справедливо:
Обратим внимание, что в точках пересечения горизонтальной оси y = 0, поэтому x² = a², и, значит, x = ±a. Таким образом, уравнение (1) описывает эллипс, наиболее длинный диаметр которого простирается от −a до +a в горизонтальном направлении. Также в точках, где эллипс пересекает вертикальную ось, выполняется x = 0, поэтому y² = b², и, значит, y = ±b, а, следовательно, уравнение (1) описывает эллипс, наиболее короткий диаметр расположен вертикально от −b до +b (см. рис. 12). Параметр a называется большой полуосью эллипса. Принято выражать другой параметр эллипса, его эксцентриситет, как
В общем случае эксцентриситет находится в пределах от 0 до 1. Эллипс с эксцентриситетом e = 0 есть окружность с радиусом a = b. Эллипс с эксцентриситетом e = 1 сплюснут настолько, что является просто отрезком горизонтальной оси с вертикальной координатой y = 0.
Определение второе
Другое классическое определение эллипса таково, что это множество точек на плоскости, для которых сумма расстояний до двух фиксированных точек (фокусов эллипса) постоянна. Для эллипса, описываемого уравнением (1), эти две точки расположены в координатах х = ±ea, y = 0, где e – эксцентриситет, определяемый тождеством (3). Пара расстояний от этих двух точек до произвольной точки на линии эллипса, координаты x и y которой удовлетворяют уравнению (1), выражается таким образом:
Так что их сумма действительно является постоянной величиной:
Это можно рассматривать как обобщение классического определения окружности как множества точек, отстоящих на постоянное расстояние от фиксированной точки.
Поскольку оба фокуса эллипса полностью симметричны, средние расстояния r>+ и r>− до точек на эллипсе (при равном весе усреднения для любого сегмента заданной длины, взятого на линии эллипса) от двух фокусов должны быть равны: r>+ = r>−, и значит, из равенства (5) получаем:
Это же число является средним между самым большим и самым малым расстоянием от точек на эллипсе до любого из фокусов:
Определение третье
Данное Аполлонием Пергским исходное определение эллипса таково: это коническое сечение, которое получается, если рассечь конус плоскостью, наклоненной к оси конуса. Выражаясь современным математическим языком, конус с ориентированной вертикально осью – это трехмерное множество точек, удовлетворяющее такому условию: радиусы круговых поперечных сечений конуса пропорциональны расстоянию, отложенному по вертикали:
где u и y – расстояния, отложенные вдоль двух взаимно перпендикулярных горизонтальных направлений, z – расстояние вдоль вертикальной оси, а α – положительный коэффициент, определяющий форму конуса (по какой причине мы обозначили первую горизонтальную координату u, а не x, вы скоро поймете). Вершиной этого конуса является точка, в которой u = y = 0, а также z = 0. Плоскость, которая рассекает конус под углом, можно определить как множество точек, удовлетворяющих следующему равенству:
где β и γ – еще два коэффициента, которые определяют, соответственно, угол наклона и высоту расположения плоскости (координаты мы определяем таким образом, что плоскость оказывается параллельной оси y). Совмещая равенства (8) и (9), получаем:
или, что то же самое,
Можно видеть, что это определение эквивалентно равенству (1), если мы определим входящие в него величины как
Обратите внимание, что отсюда e = αβ, и это значит, что эксцентриситет зависит от формы конуса и от наклона секущей его плоскости, но не от высоты, на которой располагается эта плоскость.
19. Элонгации и орбиты внутренних планет
Одним из выдающихся достижений Коперника было вычисление определенных значений для относительных размеров планетных орбит. Один простой пример – расчет радиусов орбит внутренних планет по величине их максимального видимого удаления от Солнца.
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.Для широкого круга читателей.
Описана система скоростной конспективной записи, позволяющая повысить в несколько раз скорость записи и при этом получить конспект, удобный для чтения и способствующий запоминанию материала. Излагаемая система позволяет на общей основе создать каждому человеку личные приемы записи, эриентированные на специфику конспектируемых текстов.Книга может быть полезна студентам, школьникам старших классов, научным работникам, слушателям курсов повышения квалификации.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.