Объясняя мир. Истоки современной науки - [112]
Предметно говоря, притом что мы не меняем отношения радиусов эпицикла и деферента, должно быть справедливо равенство
Здесь r>эпи и r>деф – радиусы эпицикла и деферента в системе Птолемея, а r>п и r>з – радиусы орбит той же планеты и Земли в системе Коперника (или, что то же самое, радиус орбит планеты вокруг Солнца и Солнца вокруг Земли, соответственно, в теории Тихо Браге). Конечно, Птолемей ничего не знал о системах Тихо Браге или Коперника, и свою теорию он разрабатывал иным путем. Все сказанное по этому поводу выше лишь показывает, почему теория Птолемея работала, а не то, каким образом он вывел ее.
Теперь обратимся к внешним планетам – Марсу, Юпитеру и Сатурну. В простейшей версии теории Коперника (как и у Тихо Браге) каждая из этих планет постоянно находится на одном и том же расстоянии не только от Солнца, но и от точки C’, движущейся в пространстве, сохраняя одно и то же расстояние от Земли. Чтобы найти эту точку, начертим параллелограмм (рис. 7б), первые три вершины которого в порядке против часовой стрелки будут таковы: S – точка расположения Солнца, E – точка расположения Земли, P’ – точка расположения одной из планет. Движущаяся точка C’ находится в четвертом, пустом углу этого параллелограмма.
Рис. 7. Упрощенная версия теории эпициклов, описанной Птолемеем: а) схема, согласно Птолемею, изображающая движение одной из внутренних планет – Меркурия или Венеры; б) схема движения одной из внешних планет – Марса, Юпитера или Сатурна – согласно теории Птолемея. Планета P обращается по эпициклу вокруг точки C за один год, при этом отрезок CP всегда параллелен отрезку, соединяющему Землю и Солнце, в то время как сама точка C обращается вокруг Земли по деференту за более длительное время (штриховые линии отражают особый случай теории Птолемея, в котором она эквивалентна теории Коперника).
Поскольку отрезок ES имеет фиксированную длину, а отрезок P’C’ является противоположной ему стороной параллелограмма, то P’C’ также имеет фиксированную длину, равную длине первого отрезка. Поэтому планета все время остается на одном и том же расстоянии от C’, равном расстоянию от Земли до Солнца. Это особый случай теории Птолемея, не рассмотренный им самим. В нем деферент – не что иное, как орбита точки C’ вокруг Земли, а эпицикл – орбита Марса, Юпитера или Сатурна вокруг точки С’.
И вновь, если думать лишь о расчете видимых положений Солнца и планет, можно умножить переменное расстояние любой планеты от Земли на произвольную константу, не меняя видимую картину, и этого можно достигнуть, перемножая радиусы эпицикла и деферента каждой планеты на одну и ту же постоянную величину, индивидуальную для каждой внешней планеты. И хотя у нас больше не получается параллелограмм, отрезок от планеты до точки C остается параллельным отрезку между Солнцем и Землей. Видимое движение любой из внешних планет по небу не изменится в результате такой трансформации, если неизменным останется соотношение радиусов ее деферента и эпицикла. Такова упрощенная версия теории Птолемея, предложенной им для описания движения внешних планет. Согласно ей, один оборот по эпициклу вокруг точки C планета совершает за год, в то время как точка C обращается по деференту вокруг Земли за то время, которое по-настоящему требуется планете, чтобы совершить оборот по орбите вокруг Солнца: 1,9 земных лет для Марса, 12 лет для Юпитера, 29 лет для Сатурна.
При неизменности отношения радиусов деферента и эпицикла должно быть справедливо равенство
где r>эпи и r>деф снова обозначают радиусы эпицикла и деферента в системе Птолемея, а r>п и r>з – радиусы орбит планеты и Земли, соответственно, в системе Коперника (или, аналогично, радиус орбиты планеты вокруг Солнца и радиус орбиты Солнца вокруг Земли в системе Тихо Браге). Опять же, здесь мы не описали то, каким образом Птолемей пришел к формулировкам своей теории, а лишь пояснили причину того, почему она работала довольно хорошо.
14. Параллакс Луны
Обозначим угол между направлением в зенит и на Луну, видимую из некоторой точки O земной поверхности, как ζ’ (дзета штрих). Луна непрерывно и равномерно движется вокруг центра Земли, поэтому, анализируя серию повторяющихся наблюдений Луны, можно вычислить направление от центра Земли C к центру Луны M. В частности, можно рассчитать угол ζ между лучом, на котором находится отрезок CM, и лучом из центра Земли C, пересекающим поверхность Земли в точке O, который совпадает с направлением в зенит в этой точке. Углы ζ и ζ’ слегка отличаются, потому что радиус Земли r>з, хотя и мал по сравнению с расстоянием между центром Земли и Луной d, но не пренебрежимо мал. Именно из разности этих углов Птолемей смог вывести отношение d/r>з.
Рис. 8. Использование параллакса для определения расстояния до Луны. Здесь ζ’ – угол между наблюдаемым положением Луны и вертикалью, а ζ – то значение, которое было бы у этого угла, если можно было наблюдать Луну из центра Земли.
Точки C, O и M образуют треугольник, в котором угол при вершине C равен ζ, угол при вершине O равен 180° – ζ’, а при вершине M, поскольку сумма углов любого треугольника равна 180°, угол будет 180° − ζ – (180° − ζ’) = ζ’ − ζ (см. рис. 8). Отношение
В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.
В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.Для широкого круга читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.