Объясняя мир. Истоки современной науки - [108]

Шрифт
Интервал

CP имеют ту же длину, что и катеты BC и CP в треугольнике BCP, поэтому гипотенузы BP и BP этих двух прямоугольных треугольников также должны быть равны. Значит, полное расстояние, которое луч света проходит из B в P, а потом в A, такое же, как если бы он проходил из B′ в P, а затем в A. Кратчайшее расстояние между точками B′ и A – это отрезок прямой, а значит, кратчайший путь между реальным объектом и наблюдателем – такой, при котором точка P лежит на отрезке BA. В случае пересечения двух прямых линий противолежащие по отношению к точке пересечения углы равны, поэтому угол θ между отрезком BP и зеркалом равен углу θ между отраженным лучом и зеркалом. Но поскольку у прямоугольных треугольников BCP и BCP все стороны одинаковы, угол θ должен быть также равен углу θ>п между падающим лучом и зеркалом. Таким образом, поскольку и θ, и θ>п равны θ, они взаимно равны. Это фундаментальное правило равенства углов падения и отражения определяет положение точки P, которая соответствует изображению объекта в зеркале.


Рис. 3. Доказательство теоремы Герона. Теорема доказывает, что кратчайший путь из объекта B до поверхности зеркала и затем к наблюдателю в точке A таков, что углы θ>п и θ равны. Начерченные сплошной линией отрезки помечены стрелками, показывающими направление движения луча света. Штриховая линия – перпендикуляр к поверхности зеркала между точкам B и B’, находящимися на одинаковом расстоянии от зеркала, но по разные стороны от него.


9. Плавающие и погруженные в жидкость тела

В своем великом труде «О плавающих телах» Архимед предположил, что если различные тела плавают или иным образом удерживаются в воде так, что одинаковые сечения на одинаковых глубинах прижимаются вниз различным весом, то и вода, и тела придут в движение и успокоятся тогда, когда все сечения на всех глубинах окажутся придавлены одинаковым весом. Исходя из этого предположения, он сделал несколько общих выводов о поведении плавающих и погруженных тел, некоторые из них даже имели важное практическое значение.

Для начала рассмотрим тело наподобие судна, вес которого меньше веса такого же объема воды. Оно будет плавать на поверхности, вытесняя некоторое количество воды. Если мы выделим в толще воды на какой-то глубине прямо под килем судна горизонтальное пятно такого же размера и формы, как фигура, образуемая ватерлинией судна (где корпус пересекается с поверхностью воды), то вес, приходящийся на площадь этой фигуры, будет равен сумме веса судна и всего объема воды выше этого пятна, за исключением веса воды, вытесненной судном, потому что эта вода больше не находится поверх пятна. Мы можем сравнить этот суммарный вес с тем весом, который действует на такую же площадь, расположенную на той же глубине, но где-либо в стороне от плавающего тела. Разумеется, это значение не будет включать вес плавающего тела, но зато на него будет давить полный вес водяного столба от глубины этого сечения до поверхности, без каких-либо вытесненных частей. Чтобы оба этих сечения испытывали одинаковое давление, вес вытесненной плавающим телом воды должен равняться весу самого плавающего тела. Именно поэтому вес судна называется водоизмещением.

Теперь рассмотрим тело, вес которого больше, чем вес воды такого же объема. Оно не будет плавать, но его можно подвесить в толще воды при помощи веревки или троса. Если конец троса прикрепить к плечу весов, то таким способом мы можем измерить кажущийся вес W>каж тела, погруженного в воду. Если мы точно так же, как и в предыдущем случае, выделим в глубине воды прямо под телом равное ему по площади пятно воды, то действующий на него вес будет составлен из двух слагаемых. Первое равно разности истинного веса W>ист подвешенного тела и его кажущегося веса W>каж, который полностью компенсируется натяжением троса. Второе слагаемое – это вес воды выше пятна, за исключением воды, вытесненной телом. Можно сравнить значение этой суммы с тем весом, который давит на такую же площадь, расположенную на такой же глубине, но в стороне: этот вес не будет включать слагаемые W>ист и −W>каж, но будет равняться весу столба воды от выделенного сечения до поверхности, без учета какой-либо вытесненной воды. Чтобы на оба сечения действовало одинаковое давление, необходимо выполнение равенства:



где Wвыт – вес воды, вытесненной подвешенным в воде телом. Взвешивая таким образом тело в воде и вне воды, можно найти W>ист и W>каж, а отсюда W>выт. Если объем тела равен V, то



Здесь ρ>воды (ро) обозначается плотность (отношение веса к объему) воды, это значение приблизительно равняется 1 г/см³. (Конечно, для тела простой формы, например куба, его объем можно определить простым обмером, но это трудно сделать для тела неправильной формы вроде короны.) Кроме того,



где ρ>тела – плотность тела. Если взять отношение W>ист к W>выт, то объем V сократится в дроби, и, таким образом, измеряя W>каж и W>ист, мы можем определить отношение плотностей тела и воды:



Полученная величина называется относительной плотностью материала, из которого изготовлено тело. Например, если в воде тело весит в воде на 20 % меньше, чем в воздухе, то


Еще от автора Стивен Вайнберг
Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы

В своей книге «Мечты об окончательной теории» Стивен Вайнберг – Нобелевский лауреат по физике – описывает поиск единой фундаментальной теории природы, которая для объяснения всего разнообразия явлений микро– и макромира не нуждалась бы в дополнительных принципах, не следующих из нее самой. Электромагнитные силы и радиоактивный распад, удержание кварков внутри нуклонов и разлет галактик – все это, как стремятся показать физики и математики, лишь разные проявления единого фундаментального закона.Вайнберг дает ответ на интригующие вопросы: Почему каждая попытка объяснить законы природы указывает на необходимость нового, более глубокого анализа? Почему самые лучшие теории не только логичны, но и красивы? Как повлияет окончательная теория на наше философское мировоззрение?Ясно и доступно Вайнберг излагает путь, который привел физиков от теории относительности и квантовой механики к теории суперструн и осознанию того, что наша Вселенная, быть может, сосуществует рядом с другими вселенными.Книга написана удивительно живым и образным языком, насыщена афоризмами и остроумными эпизодами.


Первые три минуты

В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.


Всё ещё неизвестная Вселенная. Мысли о физике, искусстве и кризисе науке

Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.


Рекомендуем почитать
Компьютер Бронзового века: Расшифровка Фестского диска

Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.


Неопознанные летающие объекты - величайшая научная проблема нашего времени

Автором произведенена попытка проследить и систематизировать историю появления НЛО.


Космогоническая машина

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Моделирование рассуждений. Опыт анализа мыслительных актов

Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.Для широкого круга читателей.


Библиография как историческая наука

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


О гравитации нетрадиционно

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.