Обоняние - [75]
Теперь давайте последуем за этими сигналами по внутренней электропроводке от периферийных устройств к самому мозгу. Связи эти запутанны и многообразны; они постоянно перенастраиваются, чтобы включить новую, приходящую извне информацию, и поддерживают корреляции с данными, уже хранящимися в памяти. Об обработке и взаимодействиях ольфакторного сигнала с другими сигналами по пути к высшим областям мозга мы знаем очень мало – пока он вдруг не становится осознанным опытом. Чтобы понять, как все это происходит, нам нужна помощь других дисциплин, и не только биохимии, молекулярной биологии, нейробиологии и электрофизиологии, но также и психологии – чтобы соотнести физиологические данные с эмоциями и поведением, – и информатики с математикой – чтобы постичь логику, стоящую за хитросплетением нейронных связей, и язык, которым пользуется мозг, чтобы эффективно обрабатывать получаемые от носа данные.
Изучая ольфакцию на разных уровнях и понимая, какими стратегиями пользуется нервная система для обработки обонятельной информации, мы когда-нибудь сможем собрать искусственный аппарат, способный делать химический анализ окружающей среды в реальном времени – совсем как наш нос.
Итак, давайте проследим, каким путем движется электрический сигнал от первичных ольфакторных нейронов к соответствующим областям мозга. Длинные хвостики ольфакторных нейронов, аксоны, проходят через этмоид (решетчатую кость), расположенную в верхней части носа, и оказываются в мозгу. Их цель – две ольфакторные луковицы, одна из которых находится слева, а другая справа. Они похожи на виноградные гроздья – маленькие бусинки-гломерулы, собранные в компактные структуры.
Любопытно, что все нейроны, экспрессирующие один и тот же ольфакторный рецептор и, следовательно, реагирующие на одни и те же запахи, сходятся к одним и тем же гломерулам. Представьте себе больше 1000 тонких проводков, идущих от сравнительно обширной области обонятельной слизистой, которые все сходятся в одну крошечную точку на обонятельной луковице. Теперь повторите эту проводную схему для нескольких сотен типов нейронов. Вы получили запутанный клубок проволоки, выглядящий как один большой сплошной хаос, в котором отдельные аксоны каждого нейрона отлично находят себе дорогу к правильным гломерулам, совершенно не нуждаясь ни в светофорах, ни в дорожных знаках.
Вы удивитесь еще больше, когда вспомните, что ольфакторные нейроны постоянно обновляются. Старые нейроны отправляются в утиль; стволовые клетки ольфакторного эпителия бесперебойно поставляют новые. Этим новорожденным нейронам полагается вырастить собственные аксоны и отправить их правильным путем формировать правильные связи. Ученые считают, что аксоны ведут к гломерулам все те же ольфакторные белки-рецепторы. Эти белки действительно присутствуют в аксонах, где, понятное дело, ни при каких обстоятельствах не могут войти в контакт со стимулами из окружающей среды.
Однако эта утонченная и эффективная система, разумеется, может дать сбой. В бытность мою в Калифорнии коллега рассказал мне один случай – это единственный известный мне кейс подобного рода.
В результате автокатастрофы у женщины сместился этмоид. Все аксоны ее ольфакторных нейронов, само собой, были оборваны, и в результате она полностью потеряла обоняние. Через несколько недель женщина начала выздоравливать, и обоняние к ней постепенно вернулось. Но лучше бы оно этого не делало: все запахи у нее теперь перепутались. Вообразите: смотреть на прекрасный стейк и обонять навоз или пить апельсиновый сок, который воняет тухлой рыбой. Впрочем, в конце концов леди поправилась полностью и заново обрела способность нормально интерпретировать запахи. До сих пор непонятно, сумели ли ее ольфакторные нейроны восстановить правильные связи или это мозг перепрограммировал сигналы согласно хранящейся в памяти информации.
Одна из задач всей этой сложной машинерии – добиться значительного усиления периферийного сигнала, по меньшей мере в 1000 раз, путем огромного числа «входов» от индивидуальных нейронов. При этом сигналы становятся гораздо чище, так что распознавать удается даже самые слабые из них.
Работая со слабыми электрическими сигналами, мы обычно усиливаем их до желаемых пределов, однако вместе с ними усиливается и так называемый фоновый шум – рандомные сигналы, порождаемые инструментом, который по природе своей несовершенен и может спонтанно реагировать даже в отсутствие каких бы то ни было стимулов. Точно так же и ольфакторные рецепторы страдают от фонового шума, препятствующего распознаванию слишком слабых сигналов (то есть таких, чья «громкость» равна «громкости» шума). Если сложить вместе сигналы от тысяч нейронов, мы не только усилим сигнал, но и ослабим шум, что еще более важно. Когда пахучее вещество стимулирует много ольфакторных рецепторов определенного типа одновременно, спонтанные реакции становятся случайными и эти фоновые сигналы от индивидуальных нейронов начинают отменять друг друга.
Похожие тактики применяются при некоторых видах спектроскопии, когда один и тот же спектр записывается много раз, и все данные сводятся вместе, тем самым усиливая настоящие сигналы и уменьшая фоновый шум, характерный для любого электронного инструмента.
Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Описываются дедуктивные, индуктивные и правдоподобные модели, учитывающие особенности человеческих рассуждений. Рассматриваются методы рассуждений, опирающиеся на знания и на особенности человеческого языка. Показано, как подобные рассуждения могут применяться для принятия решений в интеллектуальных системах.Для широкого круга читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Тревор Кокс охотится за звуковыми чудесами нашей планеты и наслаждается источниками экзотических звуков — скрипящими ледниками, шепчущими галереями, сталактитовыми орга́нами, музыкальными дорогами, неземными голосами бородатых тюленей и пирамидой майя, чирикающей, словно птица. Обращаясь за помощью к археологии, науке о мозге, биологии и дизайну, Кокс объясняет, как звук формируется и изменяется окружающей средой, как наше тело реагирует на необычные звуки и как эти загадочные чудеса выявляют удивительную динамику звука в повседневной обстановке — от спальни до оперного театра.
Эта книга — захватывающая история нашей способности говорить. Тревор Кокс, инженер-акустик и ведущий радиопрограмм BBC, крупным планом демонстрирует базовые механизмы речи, подробно рассматривает, как голос определяет личность и выдает ее особенности. Книга переносит нас в прошлое, к истокам человеческого рода, задавая важные вопросы о том, что может угрожать нашей уникальности в будущем. В этом познавательном путешествии мы встретимся со специалистами по вокалу, звукооператорами, нейробиологами и компьютерными программистами, чей опыт и научные исследования дадут более глубокое понимание того, что мы обычно принимаем как должное.
Сколько разговоров ведется в СМИ об иммунитете, о том, что нужно больше спать и меньше есть, о кофе, холестерине, витаминах, жирах, вреде смартфонов и пользе БАДов! Что из этого правда, а что – откровенное вранье маркетологов? Доктор медицины и старший редактор The Atlantic Джеймс Хэмблин делится исключительно проверенной научной информацией об особенностях и механизмах функционирования человеческого организма. «Хэмблин пишет с сарказмом, юмором и чувством удивления… Его остроумное исследование о диетах, пищевых добавках, поливитаминах, энергетиках и глютене – невероятно нужная работа.
До недавних пор у науки не было полного представления о механизмах сна, о всем многообразии его благотворного влияния и о том, почему последствия хронического недосыпания пагубны для здоровья. Выдающийся невролог и ученый Мэттью Уолкер обобщает данные последних исследований феномена сна и приглашает к разговору на темы, связанные с одним из важнейших аспектов нашего существования. «Сон – это единственное и наиболее эффективное действие, которое мы можем предпринять, чтобы каждый день регулировать работу нашего мозга и тела.