Обоняние - [71]

Шрифт
Интервал


Рисунок 26. Две проекции коровьего родопсина, связанного с молекулой ретиналя. Ретиналь изомеризируется из полностью-транс-формы в 11-цис-форму под воздействием фотона света. Это вызывает конформационные изменения в родопсине, который в результате порождает в клетке электрический сигнал.


Хотя родопсин и ольфакторные рецепторы совершенно различны по функциям (первый регистрирует свет, а вторые – летучие молекулы), механизм действия у них более-менее одинаков.

Рецепторы одорантов чувствуют присутствие посторонней молекулы, взаимодействуя с ее сердцевиной и меняя ее конформацию; родопсин, в свою очередь, регистрирует оборот, вызванный светом в молекуле ретиналя, и меняет свою конформацию. Родопсин в этой ситуации выступает в роли химического сенсора – если считать две формы ретиналя двумя разными молекулами, что вполне обоснованно.

От молекулярных взаимодействий к электрическим сигналам

Когда молекулы одоранта достигают поверхности ольфакторных нейронов, их блокируют ольфакторные рецепторы, сидящие в клеточной мембране подобно стражам, встречающим гостей и сообщающим об их прибытии в клетку. Рецепторы распознают пахучие молекулы на основании формы, размера и прочих химических характеристик. Затем химическая информация преобразуется в электрический сигнал, который уже гораздо легче измерить, усилить и обработать, – примерно как электрические токи в цепи компьютера или какого-нибудь электронного инструмента. Преобразование осуществляется посредством серии ферментных реакций, которую запускает изменение конформации рецептора, принимающего в свою структуру маленькую органическую молекулу – в нашем случае одорант.

Ольфакторные рецепторы посылают сообщения внутрь клетки

Поимку молекулы одоранта ольфакторным рецептором из всех биохимических элементов первым регистрирует G-белок – сложный фермент, состоящий из трех субъединиц, пребывающий в физическом контакте с рецептором. Простимулированный конформационным изменением рецептора, G-белок инициирует ферментный каскад – серию химических реакций, ведущих к производству больших количеств циклического АМФ. Эта растворимая молекула перемещается внутри клетки (в нашем случае ольфакторного нейрона) и связывается с ионными каналами, открывая их, почти как ключ открывает двери.

На рисунке 27 показаны основные этапы ольфакторного преобразования.

Эти каналы представляют собой белки с очень сложной структурой. Они работают своеобразными отверстиями в мембране, по которым могут перемещаться специфические ионы. Открытие каналов приводит к притоку ионов снаружи внутрь и наоборот, в результате чего клетка деполяризуется. На практике электрический потенциал клетки стремительно понижается из-за дисбаланса ионов между ее внутренним и внешним пространством. В целом получается так, что химическое взаимодействие одоранта с его специфическим рецептором порождает электрический импульс. Перевод химического сообщения в электрический сигнал, который затем можно дополнительно усилить, обработать и сравнить, – ключевой процесс, соединяющий внешнюю среду с мозгом [4].


Рисунок 27. Основные этапы ольфакторного преобразования. Взаимодействие молекулы одоранта с ольфакторным рецептором вызывает отделение G-белка, который активирует аденилциклазу. Продукт этой реакции, циклический АМФ, вызывает открытие ионного канала, что ведет к деполяризации нейрона и возникновению электрического сигнала.


Специальные инструменты для восприятия феромонов

Вомероназальный орган, о котором мы уже говорили ранее, – это небольшая полость системы «тупик», имеющаяся у большинства позвоночных и предназначенная для регистрации специфичных для данного вида феромонов. Это практически второй нос или, если угодно, третий основной хеморецепторный орган. Подобно носу и языку, эта область оснащена рецепторами – все теми же G-парными 7-ТМ белками. На самом деле в вомероназальном органе есть два класса рецепторов – V1R и V2R. Первый класс ближе по размеру и структуре к ольфакторным и вкусовым рецепторам, хотя их аминокислотные цепочки совсем другие. Второй содержит, помимо области с семью трансмембранными спиралями, еще один домен, такой же крупный, как сердцевина белка, и выходящий во внеклеточное пространство. Эта часть белка считается потенциальной связывающей зоной для феромонов белковой природы. Белки с феромональными свойствами, широко распространенные у дрожжевых грибов и рептилий, судя по всему, в ходу и у мышей [5]. В главе шестой мы уже говорили о том, что ОМБ, мышиные мочевые белки, запускают физиологические изменения у юных самок, ускоряя их созревание. Не так давно еще один член того же семейства, дарсин (названный так в честь мистера Дарси, героя «Гордости и предубеждения» Джейн Остин), по сообщениям ученых, показал феромональную активность [6].

Но что насчет людей? У нас есть такой вомероназальный орган? Это очень важный вопрос, так как из него вытекает еще один – о самой возможности феромональной коммуникации у нашего вида. Но подождите, обо всем этом мы поговорим позже, в десятой главе.

Вкус еды

Мы уже говорили о том, что в отличие от обонятельного вкусовой язык основан на очень простом алфавитном коде, состоящем всего из пяти букв. Абсолютно все вкусовые ощущения можно отнести к сладким, горьким, соленым, кислым и умами. Столь же простая система повторяется и на уровне белков-рецепторов, эти ощущения регистрирующих. Здесь мы снова встречаем 7-ТМ рецепторы, сходные с ольфакторными и тоже парные G-белкам. Процедура, ведущая к открытию ионных каналов и генерации электрического потенциала, тоже идентична ольфакторной.


Рекомендуем почитать
Любителям фантастики — ошибки в книгах и фильмах

На момент написания этой версии статьи мы сосредоточили внимание на нереальных деталях из русла «научной фантастики». Естественные науки особенно безжалостны к пренебрегающим их законами. Специальное замечание для упускающих из виду факт, по ряду причин не включенный в общеобразовательную программу: любой закон состоит из трех частей. Верхушка айсберга — словесное выражение закона, его формулировка (вода кипит при 100 градусах по Цельсию). Вторая, менее заметная, часть — область действия закона (какая именно вода, при каком именно давлении)


Грузины. Хранители святынь

Дэвид Лэнг, известный английский кавказовед, на основе археологических отчетов и материалов исторических исследований воспроизводит религиозные представления, быт древних племен, населявших территорию Грузии. Лэнг ведет свое насыщенное яркими красками подробное повествование из глубины веков до периода, который считается золотым веком в истории Грузии.David M. LangTHE GEORGIANS.


Кто вы, рудокопы Росси?

Нам предстоит познакомиться с загадочным племенем рудокопов, обитавших около 2–4 тысячелетий назад в бассейне реки Россь (Западная Белоруссия). Именно этот район называл М. В. Ломоносов как предполагаемую прародину племени россов. Новые данные позволяют более убедительно обосновать и развить эту гипотезу. Подобные знания помогают нам лучше понять некоторые национальные традиции, закономерности развития и взаимодействия культур, формирования национального характера, а также единство прошлого и настоящего, человека и природы.http://znak.traumlibrary.net.


Земля

В книге в очень доступной форме описаны физические свойства Земли как планеты, так и места где мы живем.


Компьютер Бронзового века: Расшифровка Фестского диска

Созданный более 4000 лет назад Фестский диск до сих пор скрывает множество тайн. Этот уникальный археологический артефакт погибшей минойской цивилизации, обнаруженный на острове Крит в начале XX века, является одной из величайших загадок в истории человечества. За годы, прошедшие со дня его находки, многие исследователи пытались расшифровать нанесенные на нем пиктограммы, однако до настоящего времени ни одна из сотен интерпретаций не получила всеобщего признания.Алан Батлер предлагает собственную научно обоснованную версию дешифровки содержимого Фестского диска.


Неопознанные летающие объекты - величайшая научная проблема нашего времени

Автором произведенена попытка проследить и систематизировать историю появления НЛО.


Книга звука. Научная одиссея в страну акустических чудес

Тревор Кокс охотится за звуковыми чудесами нашей планеты и наслаждается источниками экзотических звуков — скрипящими ледниками, шепчущими галереями, сталактитовыми орга́нами, музыкальными дорогами, неземными голосами бородатых тюленей и пирамидой майя, чирикающей, словно птица. Обращаясь за помощью к археологии, науке о мозге, биологии и дизайну, Кокс объясняет, как звук формируется и изменяется окружающей средой, как наше тело реагирует на необычные звуки и как эти загадочные чудеса выявляют удивительную динамику звука в повседневной обстановке — от спальни до оперного театра.


Зачем мы говорим

Эта книга — захватывающая история нашей способности говорить. Тревор Кокс, инженер-акустик и ведущий радиопрограмм BBC, крупным планом демонстрирует базовые механизмы речи, подробно рассматривает, как голос определяет личность и выдает ее особенности. Книга переносит нас в прошлое, к истокам человеческого рода, задавая важные вопросы о том, что может угрожать нашей уникальности в будущем. В этом познавательном путешествии мы встретимся со специалистами по вокалу, звукооператорами, нейробиологами и компьютерными программистами, чей опыт и научные исследования дадут более глубокое понимание того, что мы обычно принимаем как должное.


Если бы наши тела могли говорить

Сколько разговоров ведется в СМИ об иммунитете, о том, что нужно больше спать и меньше есть, о кофе, холестерине, витаминах, жирах, вреде смартфонов и пользе БАДов! Что из этого правда, а что – откровенное вранье маркетологов? Доктор медицины и старший редактор The Atlantic Джеймс Хэмблин делится исключительно проверенной научной информацией об особенностях и механизмах функционирования человеческого организма. «Хэмблин пишет с сарказмом, юмором и чувством удивления… Его остроумное исследование о диетах, пищевых добавках, поливитаминах, энергетиках и глютене – невероятно нужная работа.


Зачем мы спим

До недавних пор у науки не было полного представления о механизмах сна, о всем многообразии его благотворного влияния и о том, почему последствия хронического недосыпания пагубны для здоровья. Выдающийся невролог и ученый Мэттью Уолкер обобщает данные последних исследований феномена сна и приглашает к разговору на темы, связанные с одним из важнейших аспектов нашего существования. «Сон – это единственное и наиболее эффективное действие, которое мы можем предпринять, чтобы каждый день регулировать работу нашего мозга и тела.