Обитаемые космические станции - [29]
Теперь коротко расскажем о других этапах встречи. На третьем этапе, т. е. при сближении, должны быть скомпенсированы все ошибки выведения и траекторного движения ракеты, а расстояние до ОКС и относительная скорость перемещения ракеты уменьшены почти до нуля. В общем случае величина поправок зависит от взаимного положения ракеты и станции, угловой скорости линии визирования (т. е. слежения за целью) и относительной скорости сближения. Поправки будут реализовываться специальными двигателями небольшой тяги. Эти двигатели должны давать приращение скорости вдоль линии визирования или нормально к ней. На ракете должны быть установлены специальные радиолокационные, оптические или инфракрасные чувствительные элементы — датчики расстояния, скорости, ускорения и угловой скорости вращения линии визирования. При сближении они будут непрерывно измерять относительную скорость и определять взаимное положение ракеты и станции. Специальные бортовые счетно-решающие устройства будут вырабатывать необходимые данные для маневра. Конечной целью автоматического управления будет уменьшение расстояния между объектами до нескольких десятков метров и относительной скорости — до нескольких метров в секунду.
Существует несколько схем реализации задачи сближения. На графике рис. 20 нанесены две линии разных Ускорении ракеты и показаны некоторые траектории сближения. Траектория I обозначает движение ракеты c помощью двигателей постоянной тяги, включаемых импульсно. Сначала ракета движется свободно по траектории с выключенным двигателем. По достижении определенной точки после захвата станции радиолокатором Двигатель включается (точка 1) и ракета идет на сближение с ОКС с уменьшением скорости сближения. Через несколько секунд ракета достигнет второй линии в точке 2. При этом расстояние до цели (ОКС) и скорость сближения уменьшились. В этой точке двигатель выключается, и ракета вновь продолжает движение с постоянной скоростью. В точке 3 ракета снова получает ускорение, и так несколько раз до полного совмещения с ОКС. Чем ближе расположены линии включения и выключения двигателей, тем чаще происходят переключения.
Значительно удобнее было бы применить двигатель с регулируемой тягой (траектория II). Тогда после включения двигателя расстояние и скорость ракеты будут плавно уменьшаться при постоянном ускорении вплоть до встречи с ОКС.
На график нанесена также траектория III, при которой расход топлива является минимальным. В этом случае сначала сводятся к нулю все относительные скорости, кроме, конечно, небольшой поступательной скорости ракеты вдоль линии визирования по направлению к ОКС. Время маневра здесь увеличивается.
На четвертом (последнем) этапе при контакте ракеты с ОКС управление возьмет на себя непосредственно пилот или оператор. С помощью специальных приспособлений (тросов, манипуляторов и т. д.) произойдет швартовка. Энергия удара при этом поглотится специальными амортизаторами.
Возможен и другой метод осуществления контакта, при котором с расстояния нескольких десятков метров с ракеты будет выпущен трос, который будет выловлен на ОКС, после чего произойдет подтягивание ракеты к станции.
В результате контакта ОКС и ракеты почти наверняка потребуется дополнительная стабилизация системы «ОКС — ракета».
Из сказанного видно, что ветрена в космосе, представляет собой труднейшую техническую задачу. Но трудности эти вполне преодолимы уже сегодня, а в недалёком будущем, вероятно, операция встречи и контакта космических кораблей будет немногим сложнее дозаправки самолетов в, воздухе.
Рассмотрим кратко проблему возвращения транспортной ракеты с орбиты ОКС на Землю. Как известно, решение этой проблемы заключается в первую очередь в отводе и поглощении того огромного количества тепла, которое возникает при торможении космического аппарата в плотных слоях атмосферы.
Возможны различные способы входа в атмосферу космического аппарата после полета по орбите (рис. 21). Обычно спутники и обитаемые корабли, спускающиеся с орбиты на Землю, входят в атмосферу по довольно крутой баллистической траектории, подвергаясь значительным перегрузкам (до 10 g) и сильному нагреву головной части корабля (до нескольких тысяч градусов). Правда, при таком входе конструкция корабля не успевает сильно прогреться и все тепло поглощается и рассеивается головной частью аппарата. На высоте нескольких километров раскрывается парашют, с которым корабль и приземляется. Корабль или транспортная ракета могут быть спущены на Землю и с помощью винтового ротора типа вертолетного, что повысит точность посадки.
Другие способы входа в атмосферу напоминают обычное приземление самолетов. В таких случаях транспортная ракета должна иметь крылья. При этом траектория спуска может быть планирующей с небольшим углом к поверхности Земли и медленным торможением, при котором перегрузки и температуры относительно невелики, или рикошетирующей, когда крылатая ракета тормозится в процессе многократного соприкосновения с плотной атмосферой. При таких способах возвращения необходимо учитывать длительность теплового воздействия атмосферы.

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!

Иоганн Кеплер был глубоко религиозным человеком. Благодаря своему научному подходу он создал образ мира, отражающего всю полноту Божественной гармонии. Сформулированные им три закона движения планет дали изящное математическое объяснение наблюдениям Тихо Браге, подтвердили выводы Коперника и проложили путь открытиям Ньютона. Как и многие другие первопроходцы в науке, Кеплер занимался дисциплинами, которые сейчас мы называем эзотерическими, в частности, астрологией. Со временем он стал знаменитым астрологом: к его услугам прибегали принцы и короли.

История освоения околоземного пространства показана сквозь призму космической гонки вооружений.12+ (Издание не рекомендуется детям младше 12 лет).Космические просторы всегда волновали умы не только мечтателей и романтиков, но и прагматичных военных. Едва начавшись, освоение околоземных орбит сразу приобрело характер милитаризованной экспансии. И если рядовым землянам звездные войны пока кажутся фантастикой, специалисты знают: сражения в космосе уже не за горами.

СССР был пионером в области исследования космоса. Космические достижения в нашей стране долгое время являлись символом прогресса, предметом законной гордости. А. А. Александров, многие годы проработавший в ракетной отрасли, рассказывает о создателях уникальных космических аппаратов, героях-космонавтах и рядовых тружениках ракетных войск, участвовавших в освоении космоса и создании ракетного щита Родины.Книга будет интересна всем любителям истории космонавтики и ракетной техники.

В этой книге в простой и доступной форме излагаются основы астрономических знаний. Вы совершите увлекательное путешествие по Вселенной и узнаете, как определять планеты и звезды, как исследовать солнечную систему, Млечный Путь и Вселенную за его пределами, что такое Большой Взрыв, квазары, антиматерия и многое другое, как присоединиться к Программе поиска внеземного разума (SETI). Вам станет понятнее смысл современных исследований Космоса. Вы также узнаете, с чего начать при наблюдении неба и какое оборудование для этого необходимо.Книга предназначена для широкого круга читателей.

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.