Обитаемые космические станции - [25]

Шрифт
Интервал

В пассивных методах компенсация возмущающих моментов осуществляется за счет энергии, приходящей извне. Источниками компенсирующих моментов могут быть либо внешние вращательные моменты как следствие воздействия все тех же потенциальных полей Земли — гравитационного или магнитного, либо внешние направленные силы (стабилизация аэродинамическим сопротивлением или световым давлением). В первом случае необходимые компенсирующие моменты могут возникнуть при прохождении ОКС какого-либо потенциального поля Земли, если ОКС снабжена соответствующим диполем, ось которого всегда стремится совместиться с направлением наибольшего изменения напряженности поля. Если же стабилизация осуществляется внешней направленной силой, то главное требование состоит в том, чтобы центр приложения этой силы находился на определенном расстоянии от центра масс спутника.

Идея использования гравитационных сил для стабилизации ОКС возникла при изучении видимых колебаний Луны вокруг ее центра тяжести (либрации). Оказалось, что Луна стабилизирована относительно Земли довольно точно за счет весьма небольшого отличия ее формы от сферической. Анализ влияния гравитационного поля на спутники Земли показывает, что положение ОКС будет устойчивым, если ось минимального момента инерции направить по вертикали к поверхности Земли, а ось максимального момента расположить перпендикулярно плоскости орбиты станции. Интересно, что космическая станция, выполненная по форме в виде гантели, т. е. обладающая распределением масс, характерным для гравитационного диполя, будет самостабилизироваться в поле действия силы тяжести Земли. На орбите такая станция будет всегда стремиться занять положение, при котором продольная ось «гантели» (диполя) будет направлена к центру Земли, а поперечная — по перпендикуляру к плоскости орбиты. Правда, при таком способе стабилизации процесс ее будет идти очень медленно. Кроме того, вращение станции вокруг продольной оси «гантели», конечно, контролироваться не будет. Для компенсации накренений вокруг этой оси, т. е. для обеспечения полной трехосевой устойчивости, необходимо будет иметь дополнительные устройства.

Возможности стабилизации ОКС с использованием магнитного поля, при котором роль диполя должна играть катушка с электрообмоткой, ограничены еще меньшими значениями располагаемых восстанавливающих моментов. К тому же такой способ стабилизации применим для сравнительно узкого класса орбит, определяемого формой земного магнитного поля.

В качестве компенсирующего фактора в пассивных стабилизирующих системах можно использовать аэродинамическое сопротивление конструкции ОКС. Для обеспечения устойчивости центр приложения результирующей силы давления должен лежать позади центра масс спутника (смотря по направлению движения), причем величина восстанавливающего эффекта тем больше, чем больше площадь поверхности ОКС и расстояние между центром масс и центром давления. Естественно, что аэродинамическая стабилизация применима лишь до определенных высот орбиты. Предельной высотой считают 500 км [24], где давление воздуха меньше 1,5*10>–8г/см>2.

Возможности стабилизации с помощью светового давления, конечно, еще меньше, поскольку давление солнечного излучения вблизи Земли весьма незначительно. Расчеты показывают, что для компенсации небольшого возмущения за счет светового давления потребуется не менее получаса. Тем не менее считается, что такой способ может найти применение для компенсации моментов от вращающихся в процессе работы деталей оборудования и приборов.

Практически способы стабилизации с помощью пассивных методов будут, по-видимому, использованы при создании вспомогательных устройств; дополняющих работу других, более эффективных стабилизирующих систем ОКС.

Такие системы могут использовать лишь активные методы стабилизации, в которых восстанавливающий момент создается за счет энергии, получаемой или запасенной на борту ОКС. К таким методам относится стабилизация с помощью вращающихся маховиков и стабилизация реактивными соплами.

В системе стабилизации маховиками, предложенной для космических аппаратов еще К.Э.Циолковским, используется инерционное свойство вращающегося тела сохранять неизменной свою ориентацию. Известно, что, чем выше угловая скорость вращения тела и чем больше его момент инерции, тем устойчивее положение этого тела в пространстве. Таким образом, в данной системе восстанавливающим фактором служит момент вращения маховика. Раскрутка и поддержание заданной скорости вращения маховика должны производиться электромоторами небольшой мощности, питающимися от бортовой системы энергоснабжения. Три таких маховика с осями, Расположенными во взаимно-перпендикулярных направлениях, обеспечивают полную трехосевую стабилизацию спутника по тангажу, рысканию и крену (рис. 14).


Рис. 14. Стабилизация с помощью вращающихся маховиков:
>1 — электродвигатель; 2 — маховик; 3 — подшипник

Для усовершенствования системы можно взять три отдельных маховика, каждый из которых создается восстанавливающий момент только вокруг одной оси, а один сферический маховик с асинхронным электродвигателем, имеющим три взаимно-ортогональные обмотки. Сферическому маховику не нужны подшипники: подвеску можно осуществить либо с помощью магнитного или электростатического поля, либо на газовой подушке.


Еще от автора Игорь Николаевич Бубнов
О космолетах

Книга о жизни и работе космонавта-инженера, диалоги о появлении первых космических кораблей, о путях и проблемах развития пилотируемых космических полетов, о космическом будущем человечества.


Рекомендуем почитать
Затмение Луны и Солнца

Серия научно-популяризаторских рассказов в художественной форме об астрономических событиях.


Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.