О редких и рассеянных. Рассказы о металлах - [5]

Шрифт
Интервал

Сфера деятельности химических соединений галлия постоянно расширяется. Их можно встретить сегодня, в вычислительных устройствах и радарных установках, термоэлементах для солнечных батарей и полупроводниковых приборах ракетной техники. Они участвуют в изготовлении лазеров, создании люминесцентных (светящихся) веществ, оказывают сильное каталическое воздействие на многие важные процессы органической химии.

Еще недавно «гиперболоид инженера Гарина» (а точнее, писателя Алексея Толстого) казался несбыточной фантазией, а сегодня современные «гиперболоиды» — лазеры — прочно вошли в жизнь. Одним из первых лазерных материалов стал арсенид галлия. По зарубежным данным, лазеры на арсениде галлия — простые, эффективные, компактные — предполагалось использовать в космической технике, в частности для связи между космонавтом, вышедшим в открытое пространство, и космическим кораблем или между двумя станциями, находящимися на околоземных орбитах. Намечалось также применить такой лазер для ориентации корабля при посадке на Луну.

Космическая невесомость создает неповторимые условия для проведения различных технологических операций. Интересные опыты по выращиванию полупроводникового кристалла арсенида галлия проведены на американской космической станции «Скайлэб». Если в земных условиях не удается вырастить кристаллы этого вещества размером более 2–3 миллиметров, то в невесомости получен отличный кристалл-великан длиной около 25 миллиметров. Подобные эксперименты в космосе успешно прошли и на борту советской научно-исследовательской станции «Салют-6». Кроме того, наши космонавты провели на установке «Сплав» опыты по получению слитка, состоящего из молибдена и галлия. Дело в том, что молибден почти вдвое тяжелее галлия и в обычных условиях эти металлы не могут равномерно перемешиваться: при застывании слитка верхние его слои оказываются богатыми галлием, а нижние молибденом. В космосе же царит невесомость, и перед ее законами молибден и галлий равны, поэтому слиток получается равномерным по составу.

Вполне вероятно, что именно галлий поможет ученым ответить на вопрос, почему… светит Солнце. Да-да, не удивляйтесь: ведь до сих пор наука располагает лишь гипотезами о природе колоссальной энергии, миллиарды лет беспрерывно излучаемой Солнцем. Одна из самых распространенных и авторитетных гипотез утверждает, что в недрах небесного светила постоянно идут процессы термоядерного синтеза. Но как это доказать?

Самыми убедительными, хотя и косвенными уликами могли бы стать нейтрино частицы, которые образуются при термоядерных реакциях. Но вот беда: приобщить к делу эти улики необычайно трудно. Даже сам Вольфганг Паули — швейцарский физик, еще в 1933 году теоретически предсказавший существование нейтрино, полагал, что никто не сможет экспериментально подтвердить наличие этих частиц, так как они не имеют ни массы, ни электрического заряда. В то же время нейтрино обладают определенной энергией и огромной проникающей способностью. Высвобождаясь в ядре Солнца, они беспрепятственно проходят через толщу солнечного вещества и колоссальным потоком низвергаются на Землю (как, разумеется, и на другие небесные тела). Ученые считают, что на каждый квадратный сантиметр поверхности нашей планеты ежесекундно обрушивается свыше 60 миллиардов нейтрино. Однако зарегистрировать их крайне сложно: через любое вещество они проходят, словно сквозь пустоту. И все же физики нашли некоторые материалы, в которых нейтрино оставляют следы. Так, ядро атома хлора с атомной массой 37, поглощая нейтрино, испускает электрон и превращается в атом аргона с той же атомной массой. Эта реакция эффективно протекает лишь с участием нейтрино, обладающих большой энергией. Но доля таких частиц в нейтринном солнечном потоке чрезвычайно мала (менее одной десятитысячной). Вот почему для экспериментов, связанных с поисками «неуловимых», нужны поистине стерильные условия.

Попытка создать такие условия была предпринята в США. Чтобы по возможности устранить влияние других космических частиц, громадную цистерну с перхлорэтиленом (эту жидкость обычно применяют при химчистке) физики упрятали под землю на глубину около полутора километров, воспользовавшись для этого заброшенным золотым рудником в штате Южная Дакота. Согласно теоретическим расчетам, каждые двое суток в цистерне три атома хлора-37 должны были превращаться в атомы аргона-37, причем считалось, что два таких превращения произойдут «по вине» нейтрино, а третье-под действием других излучений, ухитряющихся проникнуть даже через полуторакилометровую толщу земли. Увы, обнаружить удавалось лишь один из трех атомов аргона-37, а это скорее всего означало, что посланники Солнца тут ни при чем.

Так что же: нейтрино не поступают на Землю и, следовательно гипотеза о термоядерном происхождении солнечной энергии неверна? Советские физики полагают, что указанные эксперименты еще не дают основания отказываться от сложившихся представлений о Солнце как о гигантском термоядерном реакторе. Видимо, подобные опыты требуют еще большей точности. Кроме того, теория говорит о том, что Солнце посылает на Землю большие потоки нейтрино с относительно низкой энергией, для фиксации которых хлор-аргоновый метод попросту непригоден. Вот тут на помощь и должен прийти герой нашего повествования — галлий. Оказалось, что он может служить отличной мишенью (или, как говорят физики, детектором) для нейтрино с малой энергией: ядра изотопа галлия-71 охотно поглощают эти частицы и превращаются в ядра германия-71. Определив число образовавшихся в мишени атомов германия-71, ученые смогут измерить поток солнечных нейтрино. Пока это только теория, но в нашей стране уже создана галлий-германиевая установка, а в горах Северного Кавказа (в Баксанском ущелье) пробита глубокая штольня для нейтринной обсерватории. И хотя для работы установки потребуется не одна тонна галлия, в ходе экспериментов этот довольно дорогой металл практически останется целым и невредимым. Пройдет несколько лет, и галлий, возможно, прольет свет на одну из важнейших проблем современной астрофизики.


Еще от автора Сергей Иосифович Венецкий
Рассказы о металлах

Научно-популярная книга об истории открытия, свойствах и применении важнейших металлов и сплавов. Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы. Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия.


Что хранит океан?

Где покоятся сокровища, плененные пучиной? Как к ним добраться? Кто и когда пытался проникнуть во владения Нептуна? Кому это удалось? Что смогли люди добыть со дна моря? Об этом живо и интересно рассказывает брошюра.http://znak.traumlibrary.net.


В мире металлов

Кто из нас не любовался в детстве неповторимыми узорами, возникавшими в крохотном оконце калейдоскопа? Стоило лишь слегка повернуть волшебную трубку, как на смену прежней картинке появлялась иная, еще более удивительная, потом ее сменяла новая, а за ней уже торопилась предстать перед нашим взором следующая…Мы не случайно вспомнили об этой немудреной игрушке: книга, которую вы держите сейчас в руках, — тоже своеобразный калейдоскоп любопытных событий и фактов, древних легенд, полезных сведений, курьезов и других занимательных материалов, относящихся к необычайно интересному миру металлов.Когда вы будете листать страницы этой книги, перед вами, как в калейдоскопе, пройдет множество картин, из которых вы узнаете о тайнах мастеров древности и металлургических заводах будущего, о том, как в XVIII веке бродячий "музыкант" выведал секрет выплавки тигельной стали и как в наши дни появился загадочный сплав "ферросицилий", о скрипках, изготовленных замечательным русским металловедом Д.К.Черновым, и "ошибке" известного норвежского путешественника Тура Хейердала, о "проделках" платины и "обидах" бронзового Робин Гуда, об огурцах, "фаршированных" железом, и ванадии, добытом из асцидий, о "резиновом" сплаве и "стеклянных" металлах, о радуге на стали и сахаре с молибденом…Впрочем, нужно ли пересказывать вам содержание книги, если калейдоскоп у вас в руках?..


Где клады зарыты?

Какова судьба сокровищ легендарного лидийского царя Креза? Куда исчезли драгоценности средневекового духовно-рыцарского ордена тамплиеров? Где золото Монтесумы? Хранит ли Урал клад Пугачева? Удастся ли найти богатства награбленные Наполеоном в России?Об этом и многом другом, связанном с припрятанными сокровищами, живо и интересно рассказывает автор на страницах брошюры.http://znak.traumlibrary.net.


Рекомендуем почитать
Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.


Золотая Орда. Монголы на Руси. 1223–1502

Книга немецкого историка, востоковеда, тюрколога, специалиста по истории монголов Бертольда Шпулера посвящена истории и культуре Золотой Орды. Опираясь на широкий круг источников и литературы, автор исследует широкий спектр вопросов: помимо политической истории он рассматривает религиозные отношения, государственный строй, право, военное дело, экономику, искусство, питание и одежду.


Великая разруха Московского государства, 1598–1612 гг.

В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.


Камень, ножницы, теорема. Фон Нейман. Теория игр.

Джон фон Нейман был одним из самых выдающихся математиков нашего времени. Он создал архитектуру современных компьютеров и теорию игр — область математической науки, спектр применения которой варьируется от политики до экономики и биологии, а также провел аксиоматизацию квантовой механики. Многие современники считали его самым блестящим ученым XX века.


Получение энергии. Лиза Мейтнер. Расщепление ядра

Женщина, еврейка и ученый — непростая комбинация для бурного XX века. Австрийка по происхождению, Лиза Мейтнер всю жизнь встречала снисходительность и даже презрение со стороны коллег-мужчин и страдала от преследований нацистов. Ее сотрудничество с немецким химиком Отто Ганом продолжалось более трех десятилетий и увенчалось открытием нового элемента — протактиния — и доказательством возможности расщепления ядра. Однако, несмотря на этот вклад, Мейтнер было отказано в Нобелевской премии. Она всегда отстаивала необходимость мирного использования ядерной энергии, в изучении которой сыграла столь заметную роль.