О чем говорят животные - [8]

Шрифт
Интервал

Сигналы из плавательного пузыря

В 1942 году на Атлантическом побережье США, у входа в Чесапикский залив, от которого рукой подать до Вашингтона, были установлены гидрофоны. Эти приборы, изобретенные в первую мировую войну и к сороковым годам уже достаточно усовершенствованные, предназначались для улавливания звуков в воде. В Чесапикском заливе гидрофоны должны были «нащупывать» шумы, производимые винтами фашистских подводных лодок микромалюток, и предупреждать о приближении врага. Однако ожидаемых, хорошо известных шумов в районе, находящемся под строгим наблюдением, слышно не было, зато в один из весенних дней, когда солнце давно зашло, приборы уловили какие-то непонятные звуки. Напоминали они удары отбойных молотков или треск огромного количества дрелей. Была объявлена военная тревога. Но враг не появился. На следующий день все повторилось. Опять объявили тревогу. И снова вражеских подводных лодок не было. Что же это за звуки? Отгадка привела в изумление многих. Призванные на помощь биологи выдали виновников происходящего. Ими оказались рыбы. В это время в Чесапикский залив приплыли квакуны, рыбы-барабанщики. По предположениям специалистов, их собралось там около 400 миллионов. Когда нескольких квакунов поймали и, посадив в аквариум, записали их голоса, а потом сравнили со звуками, зарегистрированными гидрофонами, сомнений не было: в заливе «пели» рыбы.

Другие звуки рыб — шумы, возникающие при движении их косяков, как выяснилось после войны, были хорошо известны японцам: они их имитировали, запуская свои «живые» торпеды для взрывов американских кораблей возле Каролинских островов. Американцы долго не могли понять, в чем причина гибели кораблей, пока случайно не обнаружили одну из таких торпед с погибшим японским майором. А что японцы действительно использовали шумы, производимые плывущими рыбами, стало окончательно ясно, когда у американцев в качестве трофея оказался японский фильм о звуках моря и о способах их воспроизведения.

И хотя еще древнегреческие ученые писали о рыбьих «разговорах», хотя имелись сведения, собранные за века рыбаками, знавшими, что рыбы не немы, и существовали даже исследования зоологов, сообщение, что рыбы издают звуки, было сенсацией.

Но почему же людям, чтобы поверить в «разговоры» рыб, потребовалось ждать появления гидрофонов?

Возникновение и распространение любого звука зависит от плотности и упругости среды. Вода по плотности превосходит воздух более чем в 7500 раз. Звук в ней распространяется со скоростью 1440 метров в секунду, т. е. быстрее в четыре с половиной раза. Когда температура воды снижается, становится меньше и скорость звука, однако на глубине благодаря большему давлению она увеличивается.

В Атлантическом океане был проделан эксперимент: на глубине взорвали заряды тринитротолуола весом в полтора килограмма. Через некоторое время приборы, находившиеся от этого места на расстоянии 4500 километров, на Бермудских островах, зарегистрировали взрыв. В чистом поле такой взрыв можно услышать на расстоянии четырех километров, в лесу не более чем в 200 метрах. Этот пример показывает еще одно достоинство воды: звуковые волны поглощаются в ней в сотни раз меньше, чем на суше. Однако все преимущества распространения звука, выигрышные для водных обитателей, предназначены лишь для них и не рассчитаны на посторонних слушателей. Граница между водой и воздухом — средами, плотность которых сильно различается, — является для звука огромной преградой. Вода не хочет делать достоянием гласности звуки, рожденные в ней: при переходе в воздух энергия звукового потока меняется мало, но звуковое давление уменьшается во много раз. Вот почему мы практически не можем слышать возникающие в воде звуки.

«Водяные уши» — гидрофоны позволили ученым начать интенсивное изучение рыбьих «разговоров». Их внимание привлекают не только обитатели морских пучин, но и рек, озер, прудов. Вскоре выяснилось, что диапазон частот, используемых рыбами при общении, довольно широк: от 20 до 12000 герц[1]. Сигналы, посылаемые многими из них, имеют частоты, на которых звучит и речь человека и музыкальные произведения.

Подводный мир полон звуков, причем самых разнообразных. Передвигаются рыбы, приподнимаются и опускаются жаберные крышки, выгибается позвоночник, меняют расположение связанные с ним кости, наконец, с поверхности тела, особенно при бросках и поворотах, срываются водяные вихри — и возникают звуки.

Из всех звуков рыб наиболее сложны и громки сигналы, которые они издают с помощью плавательного пузыря. Необычное предназначение этого органа известно давно. В 1864 году французский исследователь Моро обнаружил, что если раздражать нерв, который управляет мышцами плавательного пузыря морского петуха, то можно получить звуки, напоминающие ворчание, характерные для этих рыб. Проводившиеся много позднее опыты на горбылевых рыбах, во время которых у рыб удаляли или просто прокалывали пузырь, делали этих рыб безмолвными, но едва поврежденный орган заменяли резиновым баллончиком, они снова могли издавать звуки.

Плавательный пузырь представляет собой в сущности сферическое тело с тонкими стенками, которое наполнено воздухом и помещено в воду. При резких толчках, ударах или при сжатии это тело начинает колебаться и излучать порции (импульсы) звуковых волн. Каким получится звук, зависит от устройства плавательного пузыря. А выглядеть он может по-разному: у одних рыб по форме напоминает сердце, у других внутри него есть перегородки или выросты, у третьих — наоборот, никаких излишеств. На образование определенного звука влияет и способ, с помощью которого плавательный пузырь заставляют колебаться. У пресноводного барабанщика по бокам плавательного пузыря находятся специальные мускулы. Звуки, воспринимаемые на слух как барабанная дробь, образуются при их сокращении.


Еще от автора Людмила Леонидовна Стишковская
Зловещая рыба

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.