О чем говорят цифры. Как понимать и использовать данные - [2]
Нормативная аналитика ориентируется на более широкий круг задач и включает такие методы, как проведение экспериментов и оптимизация. Подобно тому как доктор выписывает рецепт, нормативная аналитика предлагает направление действий. Эксперимент призван ответить на вопросы о причине тех или иных явлений. Чтобы с уверенностью делать выводы о причинных связях, исследователи изменяют одну или несколько независимых переменных и наблюдают реакцию зависимой переменной, одновременно контролируя внешние по отношению к исследуемой системе факторы. Если тестовая группа, подчиняющаяся условию эксперимента, показывает существенно лучшие результаты по сравнению с контрольной группой, то ответственный менеджер может принять решение о широком внедрении этого условия.
Еще один вид нормативной аналитики – оптимизация. Она направлена на выявление оптимального значения конкретной переменной во взаимосвязи с другой переменной. Например, нам необходимо рассчитать цену продукта, обеспечивающую максимальную рентабельность его продаж. В розничной торговле оптимизационный подход таким же образом позволяет выявить уровень запасов, гарантирующий отсутствие сбоев из-за временного отсутствия какого-либо товара.
В зависимости от применяемых методов и видов данных, подлежащих сбору и анализу, аналитику можно разделить на количественную и качественную. Цель качественной аналитики состоит в углубленном понимании причин и мотивов тех или иных явлений. Обычно для этого собирают ограниченное количество неструктурированных данных на основе нерепрезентативной выборки[2], а анализ проводят нестатистическими методами. Качественная аналитика полезна при проведении поисковых исследований, то есть на первом этапе исследований аналитических. Количественная аналитика представляет собой систематическое изучение событий при помощи статистических, математических и вычислительных процедур. На основе сбора информации о большом количестве репрезентативных событий с последующей статистической обработкой обычно получают структурированные данные.
В зависимости от целей исследователи применяют различные аналитические методы:
статистика – сбор, систематизация, анализ, интерпретация и оглашение данных;
прогнозирование – оценка динамики той или иной переменной в определенный момент в будущем на основе данных о ее динамике в прошлом;
интеллектуальный анализ данных (Data mining) – автоматизированное или полуавтоматизированное выявление ранее неизвестных зависимостей в больших массивах данных с помощью специальных вычислительных алгоритмов или статистических методов;
интеллектуальный анализ текстов – выявление неизвестных зависимостей или тенденций в тексте методами, подобными интеллектуальному анализу данных;
оптимизация – использование математических методов для того, чтобы найти оптимальные решения на основе заданных критериев и установленных ограничений.
эксперимент – формирование тестовой и контрольной групп методом случайного отбора и выявление причин и степени влияния независимых переменных на зависимую переменную.
В этом списке приведены широко известные аналитические методы, причем многие из них используют одни и те же аналитические приемы и процедуры. Например, регрессионный анализ – наиболее распространенный аналитический прием в предсказательной аналитике – не менее популярен и в статистике, прогнозировании и интеллектуальном анализе данных. Точно так же анализ временных рядов, специальная аналитическая процедура из арсенала статистики, предназначенная для анализа меняющихся во времени значений переменных, используется не только в статистике, но и в прогнозировании.
Учетные данные, помогающие принимать решения по персоналу (мы уже говорили о них), являются структурированными (легко представляются в виде таблицы), количественными и относительно небольшими по объему (не более терабайта или двух даже в очень крупных компаниях). Такие данные традиционно использовались в аналитике, поэтому назовем их малыми данными. Долгое время аналитики ни с чем другим дела не имели.
Но сегодня крупные компании, некоммерческие организации и даже стартапы сталкиваются с так называемыми большими данными – неструктурированными массивами информации колоссальных объемов. Их источниками могут быть онлайновые дискуссии в интернете, видеоматериалы или данные анализа ДНК пациентов больницы. У данных такого рода объем намного больше – иногда тысячи петабайт[3]. Например, Google обрабатывает порядка 24 петабайт интернет-данных ежедневно, а AT&T[4] передает по телекоммуникационным сетям около 30 петабайт музыки и прочих данных в день. Благодаря новым прикладным компьютерным программам и техническим новшествам мы можем анализировать огромные массивы данных и извлекать из них полезную информацию.
Термин большие данные применяется для обозначения данных уникально большого объема или неструктурированных данных. Приведем несколько примеров:
• За месяц 600 миллионов пользователей Facebook добавили в сеть 30 миллиардов единиц контента.
• Компания Zynga, занимающаяся сетевыми виртуальными играми, ежедневно обрабатывает более петабайта игровой информации.
Джеральд Вайнберг, исходя из своего более чем 50-летнего опыта работы консультантом, делится своими выводами, как запустить и успешно вести свой собственный консалтинговый бизнес. Благодаря использованию юмористичных Правил, Законов и Принципов — таких как Закон малинового варенья, Принцип картофельных чипсов, Правило Руди о брюкве — автор показывает, как, оставаясь самим собой, находить клиентов, завоевывать доверие и устанавливать правильную цену на свои услуги, о которой потом не придется жалеть. Если вы консультант, когда-либо пользовались услугами консультанта или хотите быть одним из них, эта книга будет вам полезна.
Как и Тома Пикетти, который жестко критиковал капитализм, но при этом положительно его оценивал, бывший главный финансовый директор Группы Всемирного банка Бертран Бадре показывает деструктивную роль финансов в глобальном экономическом кризисе 2007–2008 гг. и предлагает смелый рецепт – использовать их во благо. Бадре объясняет, как с помощью финансов решить многие важнейшие проблемы мира – климатические изменения, бедность, восстановление инфраструктуры и многое другое. Он пишет: «Если использовать их с умом, человеколюбием, находчивостью и изобретательностью, финансы способны на великие свершения».
Хотите попросить повышение? Или сообщить подчиненному, что вас не устраивает качество его работы? Благодаря этой книге вы станете настоящим экспертом в разговоре на сложные темы: научитесь подбирать нужные слова, удачный тон и правильное время для бесед. Всего за одну неделю вы подготовитесь к разговору, мысль о котором вселяла в вас панику многие месяцы.
Если вам необходимо принять жизненно важное решение, вы нашли эту книгу в нужный момент! Когда предстоит сделать судьбоносный выбор – вступить ли в брак, переехать в другую страну, сменить работу или завести ребенка (подставьте ваш вариант) – списки «за» и «против» окажутся бесполезными и только еще больше введут в заблуждение. Верное решение находится внутри вас самих, и отыскать его поможет метод Эмили Фриман, известной писательницы и коуча. Пройдя несколько простых шагов, вы научитесь лучше понимать себя и осознаете, что вам действительно нужно и чего вы хотите по-настоящему.
В этой книге отражен результат 15-летнего исследования стратегического лидерства Hewlett Packard. Реальный опыт успешного применения принципов антихрупкости на практике, которые позволили компании выстоять против кризисов XX и XXI века.
В этой книге Пол Смит, директор по коммуникациям и потребительским исследованиям в Procter & Gamble и популярный спикер, рассказывает, как наиболее эффективно использовать силу историй. Автор уверен: каждый может стать блестящим рассказчиком. Пол Смит предлагает сотню готовых историй на все случаи жизни, которые помогут вам привлекать внимание, вдохновлять и мотивировать. Книга предназначена для всех, кто хочет воодушевлять и убеждать любую аудиторию. На русском языке публикуется впервые.