Новый ум короля: О компьютерах, мышлении и законах физики - [53]

Шрифт
Интервал

отсутствия противоречий в своей схеме. Тогда математика раз и навсегда смогла бы встать на прочную и неколебимую основу.

Однако надежды Гильберта и его последователей были перечеркнуты, когда в 1931 году блестящий австрийский логик математики Курт Гедель выдвинул поразительную теорему, которая до основания разрушала программу Гильберта. Гедель показал, что любая подобная точная («формальная») система аксиом и правил вывода, если только она достаточна широка, чтобы содержать в себе описания простых арифметических теорем (как, например, «последняя теорема Ферма», рассмотренная в главе 2), и если она свободна от противоречий — то такая система должна включать утверждения, которые не являются ни доказуемыми, ни недоказуемыми в рамках формализма данной системы. Истинность таких «неразрешимых» утверждений, следовательно, не может быть выяснена с помощью методов, допускаемых самой системой. Более того, Гедель смог показать, что даже утверждение о непротиворечивости системы аксиом, будучи переведенным в форму соответствующей теоремы, само по себе является «неразрешимым». Для нас будет очень важным понять природу этой неразрешимости. Тогда мы увидим, почему выводы Геделя опровергали самое основание программы Гильберта. Мы также увидим, каким образом они дают нам возможность, воспользовавшись интуицией, выходить за пределы любой рассматриваемой формализованной математической системы. Это понимание будет решающим для того, чтобы, в свою очередь, лучше понять обсуждаемое далее.

Формальные математические системы

Необходимо будет несколько уточнить, что мы понимаем под «формальными математическими системами аксиом и правил вывода». Мы должны предположить наличие некоторого алфавита символов, через которые будут записываться математические выражения. Эти символы в обязательном порядке должны быть адекватны для записи натуральных чисел с тем, чтобы в нашу систему могла быть включена «арифметика». По желанию, мы можем использовать общепринятую арабскую запись 0, 1, 2, 3…, 9, 10, 11, 12… хотя при этом конкретные выражения для правил вывода становятся несколько более сложными, чем требуется. Гораздо более простые выражения получаются, скажем, при использовании записи вида 0, 01, 011, 0111, 01111… для обозначения последовательности натуральных чисел (или, в качестве компромисса, мы могли бы использовать двоичную запись). Однако, поскольку это могло бы стать источником разночтений в дальнейших рассуждениях, я буду для простоты придерживаться обычной арабской записи независимо от способа обозначения, которая может на самом деле использоваться в данной системе. Нам мог бы понадобиться символ «пробел» для разделения различных «слов» или «чисел» в нашей системе, но, так как это тоже может вызвать путаницу, то мы будем по мере необходимости использовать для этих целей просто запятую (,). Произвольные («переменные») натуральные числа (равно как и целые, рациональные и т. д.; но давайте здесь ограничимся натуральными) мы станем обозначать буквами, например, t, u, v, ω, х, у, z, t', t'', t''' и т. п. Штрихованные буквы t', t'',… вводятся нами в употребление, дабы не ограничивать число переменных, которые могут встретиться в произвольном выражении. Мы будем считать штрих (' ) отдельным символом формальной системы, так что действительное количество символов в системе остается конечным. Помимо этого нам также потребуются символы для базовых арифметических операций =, +, х («умножить») и т. д.; для различных видов скобок (,), [,], и для обозначения логических операций, таких как &и»), =>следует»), Vили»), <=>тогда и только тогда»), ~ («не»). Дополнительно нам будут нужны еще и логические «кванторы»: квантор существования E>к.с.существует… такое, что») и квантор общности A>к.о.для любого… выполняется»). Тогда мы сможем такие утверждения, как, например, «последняя теорема Ферма», привести к виду:

— E>к.с.ω, х, у, z [(x + 1)>ω+3+

+ (у + 1)>ω+3 = (z+1)>ω+3]

(см. главу 2, «Неразрешимость проблемы Гильберта»). (Я мог бы написать «0111» для «3», и, возможно, использовать для «возведения в степень» обозначение, более подходящее к рассматриваемому формализму; но, как уже говорилось, я буду придерживаться стандартной системы записи во избежании ненужной путаницы.) Это утверждение (если читать его до левой квадратной скобки) звучит как:

«Не существует таких натуральных чисел ω, х, у, z, что…».

Мы можем также переписать последнюю теорему Ферма при помощи A>к.о.:

A>к.о.ω, х, у, z [~ (х + 1)>ω+3+ (у + 1)>ω+3 = (z+1)>ω+3],

которое будет читаться следующим образом (заканчивая символом «не» после левой квадратной скобки):

«Для любых натуральных чисел ω, х, у, z не может быть выполнено…»,

что логически эквивалентно написанному ранее.

Нам понадобятся еще и буквы, обозначающие целые утверждения, для чего я буду использовать заглавные буквы Р, Q, R, S… Таким утверждением может, к примеру, служить и вышеприведенная теорема Ферма:

F = ~ E>к.с.ω, х, у, z [(x + 1)>ω+3+ (у + 1)>ω+3 = (z+1>ω+3].

Утверждение может также зависеть от одной или более переменных; например, нас может интересовать формулировка теоремы Ферма для некоторого конкретного


Еще от автора Роджер Пенроуз
Большое, малое и человеческий разум

Книга написана известным английским ученым-астрофизиком и популяризатором науки Роджером Пенроузом на основе престижных Теннеровских лекций (прочитанных им в 1995 г.) и материалов вызванной этими лекциями полемики. Поэтому она включает в себя разделы, написанные крупными английскими учеными Нэнси Картрайт и Абнером Шимони, а также знаменитым физиком -теоретиком Стивеном Хокингом. Книгу отличают оригинальность идей автора, разнообразие обсуждаемых проблем (парадоксы квантовой механики, астрофизика, теория познания, проблемы художественного восприятия) и исключительно высокий научный и философский уровень изложения.


Тени разума. В поисках науки о сознании

Книга знаменитого физика о современных подходах к изучению деятельности мозга, мыслительных процессов и пр. Излагаются основы математического аппарата — от классической теории (теорема Гёделя) до последних достижений, связанных с квантовыми вычислениями. Книга состоит из двух частей: в первой части обсуждается тезис о невычислимости сознания, во второй части рассматриваются вопросы физики и биологии, необходимые для понимания функционирования реального мозга.Для широкого круга читателей, интересующихся наукой.


Рекомендуем почитать
Иррациональный парадокс Просвещения. Англосаксонский цугцванг

Данное издание стало результатом применения новейшей методологии, разработанной представителями санкт-петербургской школы философии культуры. В монографии анализируются наиболее существенные последствия эпохи Просвещения. Авторы раскрывают механизмы включения в код глобализации прагматических установок, губительных для развития культуры. Отдельное внимание уделяется роли США и Запада в целом в процессах модернизации. Критический взгляд на нынешнее состояние основных социальных институтов современного мира указывает на неизбежность кардинальных трансформаций неустойчивого миропорядка.


Онтология трансгрессии. Г. В. Ф. Гегель и Ф. Ницше у истоков новой философской парадигмы (из истории метафизических учений)

Монография посвящена исследованию становления онтологической парадигмы трансгрессии в истории европейской и русской философии. Основное внимание в книге сосредоточено на учениях Г. В. Ф. Гегеля и Ф. Ницше как на основных источниках формирования нового типа философского мышления.Монография адресована философам, аспирантам, студентам и всем интересующимся проблемами современной онтологии.


Модернизм как архаизм. Национализм и поиски модернистской эстетики в России

Книга посвящена интерпретации взаимодействия эстетических поисков русского модернизма и нациестроительных идей и интересов, складывающихся в образованном сообществе в поздний имперский период. Она охватывает время от формирования группы «Мир искусства» (1898) до периода Первой мировой войны и включает в свой анализ сферы изобразительного искусства, литературы, музыки и театра. Основным объектом интерпретации в книге является метадискурс русского модернизма – критика, эссеистика и программные декларации, в которых происходило формирование представления о «национальном» в сфере эстетической.


Падамалай. Наставления Шри Раманы Махарши

Книга содержит собрание устных наставлений Раманы Махарши (1879–1950) – наиболее почитаемого просветленного Учителя адвайты XX века, – а также поясняющие материалы, взятые из разных источников. Наряду с «Гуру вачака коваи» это собрание устных наставлений – наиболее глубокое и широкое изложение учения Раманы Махарши, записанное его учеником Муруганаром.Сам Муруганар публично признан Раманой Махарши как «упрочившийся в состоянии внутреннего Блаженства», поэтому его изложение без искажений передает суть и все тонкости наставлений великого Учителя.


Путь Карла Маркса от революционного демократа к коммунисту

Автор книги профессор Георг Менде – один из видных философов Германской Демократической Республики. «Путь Карла Маркса от революционного демократа к коммунисту» – исследование первого периода идейного развития К. Маркса (1837 – 1844 гг.).Г. Менде в своем небольшом, но ценном труде широко анализирует многие документы, раскрывающие становление К. Маркса как коммуниста, теоретика и вождя революционно-освободительного движения пролетариата.


Тот, кто убил лань

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.