Ноль: биография опасной идеи - [2]
Ключ к математике каменного века был найден при раскопках в Чехословакии в конце 1930-х годов археологом Карлом Абсаломом. Он нашел волчью кость с серией насечек; кости было тридцать тысяч лет. Никто не знает, использовал ли ее первобытный человек, чтобы сосчитать, сколько он убил оленей, сколько рисунков сделал или сколько дней не мылся, однако совершенно ясно, что древние люди что-то подсчитывали.
Волчья кость была в каменном веке эквивалентом суперкомпьютера. Предки нашего первобытного математика не могли сосчитать даже до двух, а уж ноль им точно не требовался. На самых начальных этапах люди могли различать только «один» и «много». Первобытный человек владел одним копьем или несколькими; он съедал одну убитую ящерицу или многих. Не было никакой возможности показать другие количества между «один» и «много». С течением времени примитивные языки развились достаточно, чтобы различать «один», «два» и «много», а потом и «один», «два», «три» и «много», но названий для бо́льших чисел еще не было. Некоторые языки все еще имеют такое ограничение. Индейцы сирионо в Боливии и бразильские индейцы яномамо не имеют названий для чисел больше трех, вместо этого они говорят «несколько» или «много».
Сама природа чисел такова, что их можно складывать друг с другом, получая новые, так что система не остановилась на трех. Через некоторое время умные члены племени начали нанизывать числа-слова в ряд, чтобы получить бо́льшие числа. Современные языки народностей бакайри и бороро в Бразилии демонстрируют этот процесс в действии. Их система чисел выглядит так: «один», «два», «два и один», «два и два», «два и два и один» и так далее. Эти люди считают двойками. Математики называют такую систему бинарной.
Немногие народы считают двойками, как бакайри и бороро. Старая волчья кость несет на себе более типичную древнюю систему счета. Кость имеет пятьдесят пять маленьких насечек, объединенных в группы по пять; после первых двадцати пяти отметок имеется еще одна насечка. Очень похоже на то, что наш первобытный человек считал пятерками, а потом сгруппировал пятерки по пять. В этом есть здравый смысл. Гораздо быстрее подсчитывать значки, объединенные в группы, чем пересчитывать их по одному. Современные математики сказали бы, что резчик по волчьей кости использовал основанную на цифре 5, или пятеричную, систему счета.
Но почему именно на цифре 5? В конце концов это произвольное решение. Если бы первобытный человек объединил значки в группы по четыре и считал более крупными единицами, равными 16, или в группы по шесть и равными 36, его система счета работала бы также хорошо. Группировка не влияет на число насечек на кости, она отражается только на том, как резчик их объединил. Окончательный ответ был бы получен один и тот же, как бы ни считать значки. Однако наш первобытный человек предпочел считать группами по пять, а не по четыре, и такое предпочтение разделяли люди по всему миру. Природа случайно дала человеку по пять пальцев на каждой руке, и из-за этой случайности пятерка оказалась излюбленной основой системы счета во многих культурах. Древние греки, например, использовали термин «пятерение» для описания процесса подсчета.
Даже в южноамериканских двоичных системах счета лингвисты усматривают начала пятеричной системы. Другое название на языке бороро для числа «два и два и один» — «это моя рука целиком». Ясно, что древние люди предпочитали считать, используя части своего тела, и «пять» (одна рука), «десять» (две руки) и «двадцать» (обе руки и обе ноги) были для этого излюбленными объектами. Английские слова eleven и twelve произошли, вероятно, от one over (ten) и two over (ten), «один сверх (десяти)» и «два сверх (десяти)», как, по-видимому, и русские «одиннадцать» и «двенадцать» произошли от «один над десятью» и «два над десятью». Английские «тринадцать», «четырнадцать», «пятнадцать» и так далее, скорее всего, сокращения фраз «три и десять», «четыре и десять», «пять и десять». Исходя из этого, лингвисты заключают, что «десять» являлось базовой единицей в германских праязыках, от которых произошел английский, поэтому люди использовали основанную на десятке числовую систему. С другой стороны, по-французски «восемьдесят» — это quatre-vingts, то есть «четыре двадцатки», а «девяносто» — quatre-vingt-dix («четыре двадцатки и десять»). Может показаться, что люди, жившие там, где теперь расположена Франция, использовали как основу число 20 — это была двадцатеричная система. Такие числа, как 7 и 31, принадлежат ко всем системам — и пятеричной, и десятеричной, и двадцатеричной. Однако ни одна из них не имела названия для ноля. Такого понятия просто не существовало.
Ведь нет нужды пасти ноль овец или пересчитывать ноль цыплят. Вместо того чтобы сказать: «У нас ноль бананов», торговец скажет: «У нас нет бананов». Не требуется цифры для обозначения отсутствия чего-нибудь, так что никому и не приходило в голову придумывать для нее обозначение. Поэтому люди так долго и обходились без ноля. Он просто не был нужен, а потому не возникал.
На самом деле знание о числах вообще было большим достижением в доисторические времена. Простая способность считать рассматривалась как столь же мистический и сверхъестественный талант, как наложение заклятий или знание имен богов. В египетской «Книге мертвых» говорится, что когда душу умершего расспрашивает Акен, перевозчик, переправляющий души умерших через реку в потусторонний мир, он отказывается брать в свою лодку того, «кто не знает числа своих пальцев». Душа должна пересчитать пальцы, чтобы удовлетворить перевозчика. (А вот греческий перевозчик в царство мертвых хотел получить плату, поэтому под язык мертвому человеку клали монету.)
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.