Нобелевские премии. Ученые и открытия - [22]
Проверкой предположения Лауэ занялись молодые исследователи Вальтер Фридрих и Пауль Книппинг. После нескольких экспериментов им удалось получить фотографии сложных дифракционных картин. Так, в 1912 г. была сфотографирована дифракционная картина, возникающая при прохождении рентгеновских лучей через кристалл сульфата меди. Это открытие вызвало большой резонанс в научных кругах и явилось убедительным подтверждением волновой природы рентгеновского излучения. Инициатор этих. исследований Макс фон Лауэ за открытие дифракции рентгеновских лучей получил в 1914 г. Нобелевскую премию.
Однако толкование рентгеновской дифракционной картины оказалось делом довольно сложным. Лауэ занимался этим вопросом, но с весьма небольшим успехом. Эту проблему разрешили английский физик Уильям Лоренс Брэгг (сын У.Г. Брэгга) и независимо русский кристаллограф Георгий Викторович Вульф. В 1913 г. они вывели формулу, описывающую условия интерференционного отражения рентгеновских лучей от кристаллов (формула Брэгга — Вульфа). С помощью этой формулы можно определить отклонение рентгеновского луча при прохождении через вещество. Указанная формула, связывающая длину волны рентгеновского излучения с периодом кристаллической решетки кристалла, позволяет, с одной стороны, используя рентгеновские лучи определенной длины волны, исследовать структуру вещества, а с другой — используя такие кристаллы, как поваренная соль, структура которой известна, можно исследовать сами рентгеновские лучи. Обширные эксперименты такого рода, проведенные отцом и сыном Брэггами, положили начало рентгеноструктурному анализу и принесли в 1915 г. этим ученым Нобелевскую премию по физике. У.Л. Брэгг, которому тогда было только 25 лет, долго и плодотворно работал в этом направлении. В период 1938—1953 гг., возглавляя знаменитую Кавендишскую лабораторию, У.Л. Брэгг всячески способствовал использованию рентгеноструктурного анализа в зарождающейся молекулярной биологии. И действительно, этот новый метод сыграл важную роль в открытии структуры ДНК («двойная спираль») и определении пространственного строения некоторых белковых молекул.
Интересные исследования с рентгеновским излучением осуществил в начале века Чарлз Баркла. Он первым в 1904 г. экспериментально осуществил поляризацию рентгеновских лучей, доказав их волновую природу, а в 1906 г. открыл так называемое характеристическое рентгеновское излучение. Обычно рентгеновское излучение имеет непрерывный спектр. Оно возникает при резком торможении быстрых электронов при соударении с мишенью. При высоком напряжении (свыше 10 кВ), однако, наряду с излучением, имеющим непрерывный спектр, возникает рентгеновское излучение определенной длины волны. Это излучение Баркла назвал характеристическим, потому что его спектр зависел от характера вещества мишени.
Замеченное явление в то время не удавалось объяснить теоретически. На практике его использовали для получения рентгеновских лучей с определенными свойствами, что было необходимо для рентгеноструктурного анализа. Важность открытия стала ясной через десять лет, после того как отец и сын Брэгги показали возможность исследования рентгеновских спектров с помощью кристаллов с известным строением. В то время Нильс Бор предложил квантовую модель атома, и характеристическое рентгеновское излучение стали объяснять квантовыми переходами электронов с внешних оболочек атома на внутренние. Значение открытия Баркла все более возрастало, и наконец в 1917 г. ему была присуждена Нобелевская премия по физике, которую, однако, он получил лишь в следующем году, после окончания первой мировой войны. Исследование Барклой рентгеновских лучей методом Брэггов положило начало рентгеновской спектроскопии. Ценный вклад в эту область внесли французский физик Морис де Бройль (старший брат Луи де Бройля) и английский физик Генри Мозли.
Мозли первым начал исследовать спектры рентгеновского излучения химических элементов. Он открыл закон (закон Мозли), связывающий частоту спектральных линий с порядковым номером излучающего элемента в периодической таблице Менделеева. Это открытие имело большое значение для установления физического смысла атомного номера элемента. Мозли показал, что характеристическое рентгеновское излучение создается внутренними электронами (находящимися вблизи ядра) атома. Оно дает такую же информацию о внутренних электронах атома, как обычный свет о внешних электронах.
Генри Мозли было всего лишь 26 лет, когда он в 1913 г. опубликовал свою работу, навеки вписавшую его имя в науку. Он погиб два года спустя при высадке английского десанта в проливе Дарданеллы, это произошло тогда, когда уже был подписан и выслан приказ о его демобилизации.
Незавершенная Мозли работа была продолжена шведским физиком-экспериментатором Карлом Манне Георгом Сигбаном. Он разработал новые методы получения детальных рентгеновских спектров и исследовал рентгеновские спектры почти всех химических элементов. Это позволило получить исчерпывающие данные о структуре электронных оболочек атомов.
Сигбан изготовил дифракционную решетку для исследования длинноволнового рентгеновского излучения. Тем самым он ликвидировал пробел между жестким (коротковолновым) рентгеновским излучением, которое исследуется с помощью кристаллических решеток, и оптическим ультрафиолетовым излучением, исследуемым с помощью обычной оптической дифракционной решетки. Исследования шведского ученого показали, как дополняются электронные оболочки атома при переходе от более легких элементов к тяжелым. Его наблюдения позволили определить, сколько электронов находится в соответствующей оболочке того или иного элемента. За обширные и детальные исследования в области рентгеновской спектроскопии Карл Манне Георг Сигбан был удостоен в 1924 г. Нобелевской премии по физике.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.