Нобелевские премии. Ученые и открытия - [19]

Шрифт
Интервал

Открытие Комптона стало новым убедительным доказательством реальности квантов. За это достижение он стал в 1927 г. одним из лауреатов Нобелевской премии по физике.

В то время как фотоэффект и эффект Комптона — это явления, наблюдаемые лишь в специальных условиях, так называемое комбинационное рассеяние света встречается значительно чаще. В 1928 г. индийские физики Чандрасекхара Венката Раман и Кариаманиккам Кришнан из Калькуттского университета исследовали спектральный состав света после прохождения его через различные жидкости. Они установили, что наряду с основными спектральными линиями наблюдаются и новые линии, смещенные в красную и синюю стороны. Независимо от индийских ученых и даже несколько раньше их аналогичные исследования провели с кристаллами советские физики Л.И. Мандельштам и Г.С. Ландсберг. Советские ученые опубликовали свои результаты после продолжительных экспериментов, тогда как Раман сразу же послал короткое сообщение в английский журнал Nature. Это обеспечило ему приоритет, и сегодня комбинационное рассеяние света часто называют «эффектом Рамана».

Суть этого явления состоит в следующем. Кванты оптического диапазона поглощаются молекулами вещества, вызывая их возбуждение. Возбужденная молекула излучает квант с меньшей энергией, т. е. возникает вторичное излучение, смещенное в красную область спектра. Если, другой фотон попадает в ту же самую молекулу в момент, когда она еще находится в возбужденном состоянии, то вторичное излучение будет иметь большую энергию. Это вторичное излучение смещено в синюю область спектра.

Комбинационное рассеяние света объясняет многие явления природы; этот эффект оказался ценным методом для изучения строения молекул. Сегодня спектроскопия рассеянного света широко применяется в химии и молекулярной биологии для качественного и количественного анализов. За свое открытие Раман получил в 1930 г. Нобелевскую премию по физике.

Развитее квантовых представлений

В 1921 г. американский физик Клинтон Джозеф Дэвиссон, работавший тогда в Научно-исследовательском центре фирмы «Белл телефон», обнаружил интересное явление, которое наблюдалось при отражении электронов от поверхности никелевой пластинки. Результаты исследований показывали, что электроны рассеиваются под определенным углом. Это явление удалось объяснить лишь через несколько лет, когда идеи квантовой физики получили новое, более глубокое развитие.

В начале 20-х годов теоретики стали понимать, что квантовая теория, созданная в начале века, весьма ограниченна по своему смыслу и применению. Требовалось ее дальнейшее развитие на основе новых принципов. В 1923 г. французский физик Луи де Бройль в своей докторской диссертации «Исследования теории квантов» выдвинул идею о волновых свойствах материи, которая и легла в основу современной квантовой механики. Развив глубже представления Эйнштейна о двойственной природе света, он распространил их и на вещество, объединив формулу Планка (согласно которой энергия пропорциональна частоте излучения) с формулой Эйнштейна, связывающей энергию и массу (Е = mc>2), получил соотношение, показывающее, что любой материальной частице определенной массы и скорости можно приписать соответствующую длину волны.

Луи де Бройль защитил докторскую диссертацию в ноябре 1924 г., изложив тем временем свои идеи в ряде статей. На следующий год молодой немецкий физик Вальтер Эльзассер высказал предположение, что теоретические разработки де Бройля могут быть доказаны при исследовании отражения электронов от кристалла. Но такой опыт был осуществлен Дэвиссоном еще в 1921 г. Американский ученый также следил за публикациями де Бройля, и в начале 1925 г. он приступил к исследованиям углового распределения рассеянных электронов. Наконец, 6 января 1927 г., Дэвиссон вместе с Лестером Джермером получил четкую картину рассеяния электронов, хорошо согласующуюся с теорией.

В то же самое время профессор Абердинского университета Джордж Паджет Томсон, сын известного Джозефа Джона Томсона, независимо от группы Дэвиссона открыл явление дифракции электронов. Лишь месяц спустя после своих американских коллег он также получил убедительные доказательства волнового характера этих частиц. Картины рассеяния электронов, полученные Дэвиссоном и Томсоном, были очень похожи на изображения, получаемые при дифракции рентгеновского излучения, причем эксперименты в этих двух исследованиях ставились по-разному. В то время как Дэвиссон изучал отражение медленных электронов от кристаллов никеля, Томсон исследовал прохождение быстрых электронов через металлическую фольгу. По дифракционным картинам можно было вычислить длину волны, соответствующую движущимся электронам.

Идеи Луи де Бройля раскрыли новые свойства вещества, о которых ранее даже и не подозревали ученые. В 1929 г., через шесть лет после первых публикаций, де Бройль получил Нобелевскую премию по физике за открытие волновой природы электронов.

Дэвиссон и Д.П. Томсон разделили в 1937 г. Нобелевскую премию по физике за экспериментальное открытие интерференционных явлений в кристаллах, облучаемых электронами. Наряду с большим теоретическим значением эти открытия представляли практическую ценность. Достаточно упомянуть электронную оптику, в частности электронный микроскоп, который является одним из основных приборов в современных биологических исследованиях.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.