Нобелевские премии. Ученые и открытия - [16]

Шрифт
Интервал

Законами излучения в конце прошлого века занимался и другой известный ученый — Джон Уильям Стретт (лорд Рэлей), который в 1900 г. опубликовал результаты своих исследований распределения энергии в спектре излучения. Его данные, однако, не согласовались с выводами Вина, сделанными для другой (коротковолновой) части спектра. В науке заговорили о так называемой «ультрафиолетовой катастрофе», так как именно в этом диапазоне спектра отмечалось несоответствие между результатами Вина и Рэлея. Это было одним из тех небольших облачков, которые в конце XIX в. появились на чистом горизонте классической физики.

Чтобы как-то согласовать противоречивые выводы, крупный немецкий физик-теоретик того времени Макс Планк высказал смелое предположение. В 1900 г., после 6 лет работы над проблемой излучения абсолютно черного тела, он предположил, что атомы излучают энергию определенными порциями, квантами, причем энергия каждого кванта пропорциональна частоте волны, т. е. цвету излучаемого света. Это ознаменовало рождение квантовой теории. Благодаря этому допущению Планк теоретически вывел закон распределения энергии в спектре абсолютно черного тела.

Экспериментаторы сразу же приняли новую теорию и вскоре нашли ей многочисленные подтверждения. Для теоретиков, однако, это было большим ударом. Начиная еще с работ Ньютона и Лейбница, создателей дифференциального исчисления, оперирующего с бесконечно малыми величинами, физики были твердо убеждены в беспредельной «делимости» предметов и явлений. И вдруг оказалось, что излучение носит атомистический характер и не может происходить произвольно. Даже сам Планк сдержанно принимал свое открытие, воспринимая его скорее как необходимость.

Следующий шаг на пути утверждения идеи квантов был сделан в 1905 г. Альбертом Эйнштейном. В то время как Планк принимал, что излучение происходит порциями, Эйнштейн показал, что и свет имеет квантовую структуру и представляет собой поток световых квантов (фотонов). Это по существу было возрождением старой корпускулярной теории света Ньютона. Опираясь на эти идеи, Эйнштейн сумел объяснить ряд явлений, в том числе и фотоэлектрический эффект.

Фотоэффект (явление взаимодействия между светом и веществом, которое выражается в освобождении электронов из вещества под действием электромагнитного излучения) был открыт в 1887 г. Генрихом Герцем. Вскоре на основе экспериментов было дано его описание русским физиком Александром Столетовым. Эти два ученых, по существу, наблюдали так называемый внешний фотоэффект, при котором фотоны выбивают электроны из вещества. Наряду с этим существует еще и внутренний фотоэффект (открытый в 1873 г. американским физиком У. Смитом), при котором выбитые из атомов электроны остаются внутри вещества и регистрируются по повышению электропроводности.

Представление Эйнштейна о свете как о потоке частиц позволило объяснить фотоэффект передачей энергии фотонов электронам атома. Прошло, однако, немало времени, прежде чем новые взгляды утвердились в науке, Планк стал лауреатом Нобелевской премии только в 191.8 г., т. е. почти два десятилетия спустя после того, как вывел свой знаменитый закон излучения и предложил гипотезу квантов. Альберт Эйнштейн получил Нобелевскую премию по физике в 1921 г. В то время он был уже всемирно известным физиком, автором знаменитой теории относительности, и поэтому в мотивации награждения наряду с открытием законов фотоэффекта упоминается и о его заслугах в теоретической физике.

Объяснение, данное Эйнштейном фотоэффекту, не сразу получило признание физиков, так как отсутствовали подтверждавшие его экспериментальные данные. Лишь в 1910—1914 гг. американский физик Роберт Энд-рус Милликен провел в Чикагском университете первые опыты, подтвердившие новые представления о свете. Милликен создал оригинальный прибор, который позволял измерять количество электронов (и их энергию), выбитых из металлов при освещении их светом различной длины волны (т. е. различного цвета). Этот интересный прибор дал возможность прежде всего определить так называемую постоянную Планка, устанавливающую связь между энергией и частотой кванта. Кроме того, Милликен экспериментально проверил уравнения Эйнштейна для фотоэффекта в видимой и ультрафиолетовой областях спектра.

Талантливому экспериментатору Роберту Милликену принадлежит еще одно крупное достижение, которое принесло ему широкую известность. Используя оригинальную аппаратуру и разработанный им метод капель, он провел огромное количество опытов, позволивших ему точно измерить электрический заряд электрона («атома» электричества). За это открытие, а также за исследование фотоэффекта Милликен получил в 1923 г. Нобелевскую премию по физике.

В 60-е годы XIX в. в физике произошло крупное событие: английский физик Джеймс Клерк Максвелл объединил явления электричества, магнетизма и света, создав теорию электромагнитного поля. Так возник новый раздел физики, получивший название электродинамики. Идеи Максвелла были развиты.дальше и поставлены на новую основу нидерландским физиком-теоретиком Хендриком Антоном Лоренцем, Объединив электромагнитную теорию Максвелла с представлениями об атомистическом характере электричества, он создал классическую электронную теорию. Электрические, магнитные и оптические явления теория Лоренца объясняла как движение дискретных электрических зарядов.


Рекомендуем почитать
На траверзе — Дакар

Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.


Историческое образование, наука и историки сибирской периферии в годы сталинизма

Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.


Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.