Невидимый конфликт - [31]
Основные расчетные характеристики определяются для воздействии, параллельных и перпендикулярных направлению волокон. На основании полученных результатов можно получить и механические характеристики древесины, нагруженной под определенным углом относительно волокон. На рис. 11 показаны рабочие диаграммы древесины, подвергающейся нагрузке на растяжение и сжатие в направлении волокон. При растяжении зависимость между напряжениями и деформациями представляет собой линию, слегка изогнутую вначале. Никакой пропорциональности нет. Строго говоря, закон Гука здесь теряет силу. Бросается в глаза отсутствие какой бы то ни было площадки текучести. В конечной фазе растяжения волокна начинают быстро рваться и разрушение наступает внезапно (хрупкое разрушение) при напряжениях порядка 1000 кг/см>2.
Поведение дерева при нагрузке на сжатие представляет весьма разнообразную картину. После значительного почти прямолинейного участка в связи с быстрым ростом деформаций наблюдается нечто похожее на площадку текучести у мягких сталей. Другими словами, при работе на сжатие древесина обладает ярко выраженными пластическими свойствами. Разрушение начинается с искривления самых прочных волокон в направлении более слабых; при этом на поверхности испытуемого тела образуются характерные складки. При нарастании нагрузки происходит и окончательное разрушение — при напряжениях в 2—3 раза меньших, чем в случаях работы дерева на растяжение.
Полезно сравнить рассмотренные графики с рабочими диаграммами стали. Предельная (разрушающая) деформация древесины при сжатии равна 0,6%. а при растяжении — 0,8%. По этим характеристикам дерево приближается к высокопрочным сталям, тогда как у мягких и низколегированных сталей они значительно выше. В интервале же практически целесообразных и допустимых деформаций положение обратное. За предел пропорциональности (точка, до которой остается в силе закон Гука) и при растяжении, и при сжатии принимается напряжение, равное половине предельной прочности. Оно может быть достигнуто при деформации 0,15% (сжатие) и 0,35% (растяжение), тогда как у мягких сталей рабочий диапазон простирается до деформации 0,1%. Таким образом, в реальных конструкциях дерево проявляет себя как материал более деформируемый, чем сталь.
С другой стороны, при рабочих деформациях одного и того же порядке древесина работает со значительно меньшим напряжением. Отсюда следует, что ее жесткость, упругость и модуль упругости гораздо меньше, чем у стали. Почти в 20 раз меньше…
Когда мы рассматривали сталь, мы упомянули о еще одном сложном виде силового воздействия — об изгибе. Теперь же сделать это просто необходимо.
На изгиб работают почти все элементы почти всех видов строительных конструкций. Это, наверное, самая распространенная форма конфликта между нагрузками и конструкциями, между силовыми воздействиями и материалом.
Едва ли мы удивим кого-нибудь утверждением, что при изгибе одна часть сечения элемента подвергается сжатию, а другая — растяжению. Каждому случалось преодолевать препятствие по перекинутой доске или бревну. Физическое ощущение при этом наиболее яркое; провисающая под тяжестью нашего тела доска сама по себе достаточно отчетливо характеризует одно из главных инженерно-теоретических понятий — «изгиб». На рис. 12 показано, что верхняя часть изгибаемого элемента укоротилась, а нижняя удлинилась. Но деформация укорачивания предполагает возникновение сжимающих напряжений, а деформация удлинения — растягивающих. Следовательно, можно сказать, что изгиб — это форма одновременного сочетания растяжения и сжатия в рамках одного и того же сечения.
Практическая модель этого явления основывается на весьма простой гипотезе: предполагается, что элемент состоит из множества нитей, каждая из которых деформируется независимо от других. Кроме того, любые два сечения, находящиеся достаточно близко один от другого и перпендикулярные оси элемента, даже в случае очень сильной деформации остаются перпендикулярными провисшей оси. Физический эквивалент этого словесного описания можно видеть на рис. 12. При взаимном развороте двух сечений наиболее сильно деформируется (растягивается) нижний слой волокон. Следовательно, по закону Гука, в этом слое возникают самые большие напряжения. Волокна над этим слоем деформируются слабее и работают с меньшим напряжением. Еще слабее деформируется следующий слой волокон. Так мы доходим до среднего слоя, который вообще не деформируется и, следовательно, оказывается ненапряженным. Вверх от этого слоя деформации и напряжения снова нарастают, но с обратным знаком. Теперь это деформации сжатия.
Так как деформации распределяются линейно по высоте сечения, соответствующие напряжения тоже распределены линейно, что можно видеть и на их диаграмме. Следует обратить внимание, что напряжения, действующие перпендикулярно (или нормально) по отношению к плоскости сечения, называются нормальными напряжениями. Ниже на рисунке показаны и другие напряжения, которые действуют в плоскости сечения (тангенциально). Эти напряжения называются тангенциальными. Но не будем опережать события.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.