Необыкновенная жизнь обыкновенной капли - [6]
В беседе с академиком Б. В. Раушенбахом, нашим известным ученым, соратником С. П. Королева, Оберт с гордостью напомнил собеседнику, как одним из первых понял и высоко оценил труды Циолковского.
Не все ученые того времени были столь прозорливы, отчасти из-за своеобразия формы публикаций Константина Эдуардовича, заменявшего часто в формулах алгебраические символы словами. Оберта повезли в Центр подготовки космонавтов и среди прочего показали специальный бассейн, где удельные веса жидкости и плавающего тела одинаковы. Космонавты в скафандрах демонстрировали тренировку в условиях невесомости. Борис Викторович Раушенбах рассказывал: Оберту все очень понравилось, и он ко всеобщему веселью сделал вдруг заявку на приоритет:
— О да, интересно! Но я сам проделал это еще в 1916 году. Погружался с головой в свою ванну, держа трубочку во рту. Мне очень хотелось почувствовать, что есть невесомость...
Прошли годы. Вот-вот станет явью мечта Циолковского, говорившего, что Земля — колыбель человечества, но нельзя все время жить в колыбели. По обе стороны океана уже шли к космическим стартам. Но первым взлетел в космос 12 апреля 1961 года наш Юрий Гагарин на корабле «Восток», и одним из решающих факторов успеха были мощные и надежные ЖРД.
Вспомним рациональный, поразительно простой и эффективный принцип действия ЖРД (см. рис. 5). Горючее и окислитель из баков подаются центробежными насосами в камеру сгорания: окислитель — непосредственно к своим форсункам, а горючее — к своим, но через узкую полость между двойными стенками камеры сгорания и сопла. Только так, используя большой поток горючего в качестве охладителя, можно защитить камеру и сопло (конструктивно они представляют одно целое) от чудовищного (выше вулканического) жара, развиваемого внутри этого химического двигателя. Горючее, подогреваемое между стенками, готовится к процессу смесеобразования. В реальных двигателях вспомогательный насос подает его из отдельного бака в газогенератор — специальную меньшую камеру, работающую при более низкой температуре. Здесь оно газифицируется и идет как рабочее тело на колесо турбины. Турбина вращает соосно расположенные основной и вспомогательный насосы — все в целом образует ТНА (турбонасосный агрегат), компактный сгусток современной технической мысли; перед запуском ЖРД его раскручивает специальный стартовый движок. Автоматика регулирует режим работы, поддерживает заданную пропорцию жидких компонентов.
Камера сгорания ЖРД — подлинное царство капель, они владеют всем пространством на начальном ее участке — там нет никакой металлической начинки, как в ВРД (форкамеры, стабилизаторы). Здесь оба компонента реакции — и горючее, и окислитель — используются в виде жидкости, например керосин и сжиженный кислород (или спирт с азотной кислотой, отдающей кислород при разложении). В этом заключается отличие от ВРД, для которого возят с собой только жидкое горючее, а окислитель даровой — из воздуха атмосферы.
Все ВРД — проточные каналы, ЖРД — глухой горшок, дно его плотно усажено сотнями форсунок — форсуночная головка должна за секунду пропускать многие килограммы жидкости. В форсуночной головке распылители обоих компонентов расположены в определенном порядке, чтобы каждый факел горючего равномерно по возможности насытить окислителем. Часто используют сотовое расположение, подсказанное архитектурой пчелиного улья.
В адском горшке ЖРД приготовляется более калорийное варево, чем в камере ВРД. Температура газов на выходе из двигателя достигает 3500 К и более. Однако набор процессов смесеобразования здесь в принципе тот же, что и в воздушных камерах: распыливание, движение и испарение капель, смешение паров до горючей концентрации, только организованы они сложнее во времени и в пространстве. Все явления протекают почти рядом, бок о бок друг с другом и горением. Исследователи нарисовали картину рабочего процесса в ЖРД. Плотное облако капель в факелах форсунок увлекает за собой слои окружающего газа, на их место обратно засасываются встречные струи горячего газа — продукты полного и неполного сгорания из начальной зоны пламени. Образуются обратные токи — вблизи форсуночной головки крутятся колечки интенсивных вихрей. Только жидкие розетки, и густое облако капель спасают сами форсунки от выгорания.
Химическая реакция горения протекает бурно и идет преимущественно в газовой фазе; сквозь газ движутся горящие капли — давление в камере высокое: 50 и более атмосфер. Температура быстро нарастает от задней стенки к выходу камеры. Продукты сгорания поступают в реактивное сопло, где поток разгоняется до высоких сверхзвуковых скоростей, и таким образом тепловая энергия преобразуется в кинетическую. Мы помним счетверенные слепящие блики на теле- или киноэкране, когда показывают запуск космического корабля,— это огненные выхлопные струи из сопел связки двигателей, ими оснащена космическая ракета, идущая в зенит.
Мощность и тяга современных ЖРД очень велики. Пять двигателей первой ступени американской ракеты «Сатурн», забросившей «Аполлоны» на Луну, имели тягу около 600 тонн каждый.
Проблема астероидно-кометной опасности, т. е. угрозы столкновения Земли с малыми телами Солнечной системы, осознается в наши дни как комплексная глобальная проблема, стоящая перед человечеством. В этой коллективной монографии впервые обобщены данные по всем аспектам проблемы. Рассмотрены современные представления о свойствах малых тел Солнечной системы и эволюции их ансамбля, проблемы обнаружения и мониторинга малых тел. Обсуждаются вопросы оценки уровня угрозы и возможных последствий падения тел на Землю, способы защиты и уменьшения ущерба, а также пути развития внутрироссийского и международного сотрудничества по этой глобальной проблеме.Книга рассчитана на широкий круг читателей.
Доказала ли наука отсутствие Творца или, напротив, само ее существование свидетельствует о разумности устройства мироздания? Является ли наш разум случайностью или он — отражение того Разума, что правит Вселенной? Объективна ли красота? Существует ли наряду с миром явлений мир идей? Эти и многие другие вопросы обсуждает в своей книге известный физик-теоретик, работающий в Соединенных Штатах Америки.Научно-мировоззренческие эссе перемежаются в книге с личными воспоминаниями автора.Для широкого круга читателей.Современная наука вплотную подошла к пределу способностей человеческого мозга, и когнитивная пропасть между миром ученого и обществом мало когда была столь широка.
Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой.
Осенью 2008 года газеты запестрели заголовками, сообщавшими» будто в недрах Большого адронного коллайдера (БАК), на котором физики собирались расщепить вещество на элементарные частицы, родятся микроскопические черные дыры, способные поглотить Землю.Какое значение имеет БАК для науки? Что ученые ищут? Почему физика, возможно, вскоре совершит один из величайших рывков в своей истории? Все эти вопросы обсуждаются в книге «Коллайдер». Автор, кроме всего прочего, доказывает, почему невозможно ни практически, ни теоретически, что на БАК появятся черные мини-дыры, которых все так боятся.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Вернер Карл Гейзенберг (нем. Werner Heisenberg; 5 декабря 1901, Вюрцбург — 1 февраля 1976, Мюнхен) — немецкий физик, создатель «матричной квантовой механики Гейзенберга», лауреат нобелевской премии по физике (1932). Умер в 1976 году от рака.