Неизвестный алмаз. «Артефакты» технологии - [8]

Шрифт
Интервал

На последней пластине, увеличившейся в толщине на ~ 7 5 мкм, в центре ее объема наблюдалась белая полупрозрачная, словно туман, область – рассеяние света на флуктуациях плотности. Такое явление называется опалесценция [16]. При критической опалесценции свет очень плохо проходит через вещество, рассеиваясь во все стороны. Вещество в критической области больших флуктуаций плотности приобретает мутно-белую окраску, напоминающую минерал опал, отсюда это явление получило название опалесценция.

Источником волн, генерируемых в объем алмаза при соприкосновении с инструментом, является зерно алмазного абразива. На поверхности инструмента (при его изготовлении) происходит произвольное распределение этих зерен при определенной концентрации этого абразива в объеме рабочего слоя. В результате обработки, учитывая скорость вращения инструмента, каждое зерно абразива, имея произвольные пространственные координаты в плоскости инструмента, с определенной периодичностью взаимодействует с поверхностью алмаза. Поскольку каждое зерно является источником волны, то в этом случае можно предполагать высокочастотную генерацию волн в объем алмаза при взаимодействии этих зерен с поверхностью кристалла. Характер этой генерации в общем случае носит относительно шумовой характер. В традиционной технологии обработки алмаза так и происходит.

В нашем случае колебания работающего инструмента (частота ß) в строго определенном аппаратурном факторе >a) обеспечивают приращение линейной скорости движения инструмента относительно обрабатываемой поверхности алмаза (ΔV). Поскольку колебания инструмента (частота ß) происходят с гораздо меньшей частотой, по сравнению с частотой касания каждого зерна абразива, то в результате периодическую функцию изменения скорости (см. рис. 1.1) можно представить как некую частотно-модулированную функцию воздействия на кристалл. А условия строгого постоянства ΔV и создают тот самый определяющий фактор образования когерентного поля упругих деформаций в объеме алмаза.

Возможно ли обычную механическую обработку кристалла описать взаимодействием довольно сложных волновых функций работающего инструмента и алмаза? В рамках существующих представлений такое описание не имеет смысла, ибо в применяемых современных технологиях взаимодействие этих функций смысла не несет (прямая линия на рис. 1.1). И учитывать тонкие волновые взаимодействия в кристалле алмаза в ручном режиме огранщики не в состоянии, поэтому обрабатывают алмаз без учета этих взаимодействий. Волновой процесс в этом случае неуправляемый и относится к области паразитных шумов с точки зрения фононной подсистемы кристалла (идет повышение его температуры). В качестве примера нашего «тонкого» волнового воздействия приведу одну из составляющих общего алгоритма трансформации кристалла. Общий алгоритм описывать долго и не имеет смысла. А вот одну из его изюминок я с удовольствием опишу.

Как уже сообщалось выше, ΔV является константой и строго зависит от (г>a). Это аппаратурный фактор и в процессе воздействия не меняется. А каким же образом в процессе воздействия можно на него (ΔV) повлиять?

Эксцентричное перемещение оси α вокруг оси ß может происходить двумя путями:: либо это перемещение и вращение инструмента однонаправленно (вращение и перемещение происходит в одну сторону), либо они вращаются в разных направлениях. И в этом случае проявляется один очень важный момент: вращаясь в одну сторону, скорость движения по оси ß дополняет скорость вращения по оси α. В результате ΔV имеет приращение (немного увеличивается).

При противоположном движении возникает противоположный эффект, и ΔV немного уменьшается. Вроде бы очевидный факт, но при нашем периодическом волновом воздействии на алмаз этот факт (как и его комбинации) значительно влияет на формируемое волновое поле алмаза. И это влияние проявляется во вполне определенных тонких эффектах, как в морфологии поверхности, так и в формировании объемной флуктуационной структуры алмаза, расширяя возможности нашей технологии.

В качестве примера приведу картинку движения произвольной точки (или единичного зерна абразива) на поверхности инструмента (области окружности, описываемой осью «вокруг оси ß). Характер этого движения фиксируется нашим компьютером во время работы системы. Соотношение частот α и ß в данном случае формирует некую пятилепестковую фигуру.

Математически эту траекторию можно описать как траекторию эпициклоиды. Ее образование вполне понятно, ибо это эффект эксцентричного движения оси α вокруг оси ß в однонаправленном режиме [17].

Следующая картинка – изображение гипоциклоиды. Кратность соотношения частот строго соблюдена. Все параметры движения сохранены, только поставлен знак (—) в одном из параметров направления движения инструмента. Движения оси α вокруг оси ß разнонаправленные.


В этом случае происходит не только изменение величины AV, но и существенное изменение характера волновой функции воздействия на кристалл алмаза активного инструмента. А это отражается, в свою очередь, на формируемом волновом поле алмаза.

Этот прием с учетом основного алгоритма воздействия и был реализован при получении молочного тумана опалесценции в объеме CVD кристалла. Красивый и элегантный приемчик, правда? И делается простым нажатием пальца по клавиатуре…


Рекомендуем почитать
Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Эмбрионы в глубинах времени

Эта книга предназначена для людей, обладающих общим знанием биологии и интересом к ископаемым остаткам и эволюции. Примечания и ссылки в конце книги могут помочь разъяснить и уточнить разнообразные вопросы, к которым я здесь обращаюсь. Я прошу, чтобы мне простили несколько случайный характер упоминаемых ссылок, поскольку некоторые из затронутых здесь тем очень обширны, и им сопутствует долгая история исследований и плодотворных размышлений.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.