Неизвестный алмаз. «Артефакты» технологии - [4]

Шрифт
Интервал

Важно заметить, что в этой ситуации накопленная энергия взаимодействующих волн поглощается кристаллической средой не равномерно, а всей порцией, т. е. реализуется квантово-размерный эффект поглощения волновой энергии. При этом за малое время (~10>–15 с) уровень волновой энергии в домене может достигать значения 10>–13÷10>–14 Дж. Очевидно, такие высокоэнергетичные домены являются наиболее вероятными местами разрушения поверхностного слоя кристалла.

Отметим следующее: при таком локальном разрушении поверхностного слоя упругое давление в этих доменах составляет примерно (1,6÷.2,5)·10>9 Н⋅м>–2. Это на порядок меньше величины критического напряжения σ ≅ 2⋅10>10 Н⋅м>–2, необходимого для возникновения поверхностной трещины по известным моделям Герца и Ауэрбаха, где разрушение кристалла происходит путем образования микросколов. В связи с этим можно предположить, что при определенных условиях управляемого когерентного волнового воздействия на кристалл алмаза материал из его поверхностного слоя будет удаляться преимущественно в форме нанокластеров.

По нашим оценкам, размер этих кластеров находится в диапазоне 3÷350 нм в зависимости от условий волнового возбуждения при формировании поверхности алмаза. Заметим, что изменение поверхностной энергии при удалении кластеров не превышает 10>–14 Дж, т. е. имеет место энергетический выигрыш в этом процессе, что является косвенным подтверждением реализации механизма удаления материала в виде нанокластеров.

В морфологических мотивах рельефа реальных поверхностей, обработанных последовательно от уровня их шероховатости 4,43 нм до 0,52 нм в условиях когерентного волнового возбуждения, надежно наблюдаются мелкие детали высотой (15÷3) нм соответственно. В специальных условиях обработки шероховатость может достигать величины ~0,2 нм.

Контроль параметров морфологии шероховатости поверхности алмаза (шероховатость R>a, среднеквадратическая шероховатость R>q, размах высот R>max) проводился на атомно-силовых микроскопах (ACM) марки Р4 Solver и Р47 Solver фирмы NT MDT (Россия) и рассчитывался по стандарту, заложенному в программном обеспечении микроскопа.

Разработанный нами кинематический принцип независимого двухосевого движения обрабатывающего инструмента является инновационным и открывает новые ранее неизвестные возможлюсти в обработке кристаллов алмаза [12].

Далее мы приведем примеры экспериментальных результатов воздействия на кристаллы алмаза. Эти результаты еще ждут своего детального объяснения и описания. На сегодняшний день этих детальных объяснений пока не существует, а есть только гипотезы и предположения. Но даже простое перечисление полученных результатов нашего воздействия на алмаз заслуживает пристального внимания и нетрадиционных суждений исследователя в попытках их интерпретации.

«АРТЕФАКТЫ» ТЕХНОЛОГИИ

Глава 2

Поверхность

Применяемые нами условия воздействия зерен абразива инструмента на алмаз, как мы предполагаем, не превышают предела упругой деформации кристалла. Таким образом, используя стандартный по своей сути инструмент, управляя только изменением определенного алгоритма волнового возбуждения (изменением программного обеспечения, задающего параметры для системы управления обработкой алмаза), мы добиваемся характерного многообразия рельефа поверхности в широком диапазоне ее шероховатости.

На рис. 2.1 приведено изображение поверхности алмазной пластины, ориентированной в направлении (111), т. н. твердое направление в кристалле, которая обработана по традиционной технологии огранки алмазов в бриллианты 131.

В мотиве рельефа поверхности обработанного кристалла наблюдаются характерные поверхностные конфигурации, свойственные обработке с реализацией механизма микросколов.


Рис. 2.1. Изображение поверхности алмазной пластины (111), обработанной по стандартной технологии. R>a = 18,2 нм, R>q = 20,2 нм, R>max = 214,8 нм


Сформированный нашим методом микрорельеф поверхности алмаза (111) приведен на рис. 2.2–2.6, где показано изменение морфологии поверхности при уменьшении величины ее шероховатости (R>a) в зависимости от времени волнового воздействия.

Как видно из приведенных рисунков, обработанная по новому методу воздействия поверхность алмаза обладает своеобразным мотивом рельефа поверхности. Этот мотив продиктован неповторяемостью движения зерен абразива по поверхности алмаза и протекающим в объеме алмаза и на его поверхности взаимодействием волн упругих деформаций. Вся обработанная поверхность представляет собой равномерную волнообразную субстанцию.



Рис. 2.3. Время воздействия 10 мин. R>a = 4,4 нм, R>q = 5,9 нм, R>max = 53,3 нм


Рис. 2.4. Время воздействия 15 мин. R>a = 1,69 нм, R>q = 2,86 нм, R>max = 118,6 нм


Рис. 2.5. Время воздействия 20 мин. R>a = 0,9 нм, R>q = 1,7 нм, R>max = 28,1 нм


При подготовке поверхности пластин алмаза для проведения на них экспериментальных ростовых процессов молекулярно-лучевой эпитаксии пленок кремния были учтены пожелания технологов к формируемой поверхности алмаза. Эти требования относились в основном к разориентации пластины алмаза на ~5° относительно направления (111) и по возможности созданию минимальной шероховатости обработанной поверхности.


Рекомендуем почитать
Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Эмбрионы в глубинах времени

Эта книга предназначена для людей, обладающих общим знанием биологии и интересом к ископаемым остаткам и эволюции. Примечания и ссылки в конце книги могут помочь разъяснить и уточнить разнообразные вопросы, к которым я здесь обращаюсь. Я прошу, чтобы мне простили несколько случайный характер упоминаемых ссылок, поскольку некоторые из затронутых здесь тем очень обширны, и им сопутствует долгая история исследований и плодотворных размышлений.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.