Неизвестный алмаз. «Артефакты» технологии - [27]
В случае наших предстоящих экспериментов достаточно поместить кантилевер, например, на вершину пирамиды нашего кристалла алмаза и перевести атомно-силовой микроскоп в режим осциллографа. При возникновении флуктуаций (механических колебаний) поверхности исследуемого кристалла при УФ-облучении алмаза кантилевер должен соответственно прогибаться и на экране монитора компьютера должно регистрироваться изображение этих колебаний.
При проведении эксперимента кристалл алмаза фиксировался своим основанием на держателе объекта микроскопа с помощью двустороннего скотча. Кантилевер микроскопа помещался на вершину кристалла с целью регистрации ее механических колебаний. Авторучка с УФ-светодиодом, закрепленная на специальном кронштейне, подводилась к боковой грани алмаза на расстояние ~ 7—10 мм.
Через ~422 секунды после начала облучения поверхности алмаза УФ-светодиодом на экране монитора неожиданно возникла картина генерации когерентных механических колебаний поверхности вершины алмаза (рис. 8.5).
На рис. 8.6 показана картина генерации когерентных акустических колебаний вершины алмаза при УФ-облучении. Частота этих колебаний составила ~45,4 Гц, амплитуда ~ 16,0 нм.
Рис. 8.5. Начало генерации акустических колебаний вершины алмаза. Результат получен на микроскопе «ИНТЕГРА Прима» фирмы «НТ-МДТ» Ю.А. Бобровым (Москва, РФ)
Рис. 8.7. Спектр акустических колебаний вершины алмаза при УФ-облучении
Наблюдаемая на графике периодичность изменения амплитуды сигнала с частотой -100 Гц является аппаратурным фактором и связана с заданной частотой дискретизации, которая использовалась при оцифровке сигнала управляющим компьютером.
На рис. 8.7 приведен спектр генерируемых когерентных акустических колебаний вершины алмаза.
Проведенный эксперимент показал, что сформированная в объеме алмаза когерентная волновая среда, которая образовала устойчивую сверхструктуру энергетических флуктуаций в алмазе, при УФ-облучении кристалла способна активно реагировать на подобные возмущения генерацией когерентных акустических колебаний. По нашему мнению, этот факт открывает новые свойства и новые возможности применения кристаллов алмаза.
Заключение
О самом известном и самом загадочном кристалле природного алмаза, казалось бы, известно многое. Но почему-то иногда возникает ощущение, что встреча с каждым новым кристаллом обогащает тебя, и ты получаешь что-то свое особенное, внутреннее, комфортное. Словно осторожно и бережно ты приоткрываешь этот таинственный занавес своих сомнений и зашоренностей, подозревая, что за ним скрывается новый волнующий мир неведомого и ты можешь к этому миру прикоснуться…
Мы не сомневаемся, что наша квантово-волновая технология воздействия на алмаз открывает новые, ранее неизвестные свойства этого кристалла. Нам она открыла эту удивительную когерентную волновую динамическую вихревую квантовую винтовую среду упругих деформаций, к изучению которой мы только начинаем приступать. Открыла Этот необычный мир неравновесных процессов, который сотворяет новые свойства и новые состояния этого удивительного кристалла алмаза, применяя в своем воздействии законы Природы, которые, по всей видимости, являются основами мироздания.
Многие результаты экспериментов не вошли в эту книгу, поскольку у нас еще нет способов фиксации быстро протекающих процессов в объеме алмаза при нашем воздействии. Мы не можем вам показать, как целеустремленно разбегаются дислокации из объема кристалла на его поверхность при первом же прикосновении инструмента. Как не спеша рассасываются двойниковые границы, очищая объем от остатков внутренних напряжений. Как величаво «надувается» поверхность алмаза, превращаясь в выпуклую линзу удивительной прозрачности. Как низкосортное, бросовое сырье в процессе воздействия начинает искриться, менять свое внутреннее состояние, раскрашивать свои напряженные области в чистые цвета радуги, трансформируясь во что-то удивительное и завораживающе красивое, словно гадкий утенок превращается в величавую и гордую птицу. И мы очень сожалеем, что не можем вам всего этого показать…
Многие вопросы пока остаются без ответа. Какую энергию от Солнца впитывает в себя алмаз после нашего прикосновения? Что приводит к деформации его поверхности после этого облучения и почему «распыляется» полиэтилен? Почему иногда в оптическом микроскопе нельзя навести резкость на поверхность алмаза после воздействия солнечного света, словно весь кристалл становится одной «дышащей» флуктуацией? Почему изменяется концентрация атомов азота в объеме алмаза и, учитывая практически нулевой коэффициент его диффузии в этом кристалле, откуда этот дополнительный азот вообще берется? И почему концентрация атомов азота всегда только увеличивается и никогда не уменьшается? Какая энергия, используя какие законы при нормальных условиях нашего воздействия меняет алмаз из явно выраженной октаэдрической формы в не менее явно выраженную форму «шарика»? И в конце концов почему уменьшаются показания веса обработанного нами алмаза на электронных весах в процессе его облучения ультрафиолетовым светом, а потом после прекращения этого воздействия не спеша и с удовольствием восстанавливаются?..
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.