Небесные сполохи и земные заботы - [30]
Однако в начале 60‑х годов эта задача уже была в первом приближении решена. Для этого не понадобилось выяснять всю физику процессов в радиационных поясах, достаточно было путем измерений и приближенных оценок оконтурить их область. Уже кружили вокруг Земли спутники, на безопасных орбитах работали космонавты. Решающий шаг человечество сделало: космос стал доступен. Люди получили возможность оглядывать свою планету целиком, проводить в космосе необычные технологические операции. Все это можно делать, летая в той же безопасной зоне. И что нам в таком случае до явлений в радиационных поясах!
Конечно, спутники дают возможность подробно изучать эти явления, но мне казалось не совсем понятным, почему мы этой возможностью пользуемся. Потому что можно изучать или потому что стоит изучать? В самом деле, и на Земле есть много опасных для судоходства мест, но люди осваивают их «в рабочем порядке», не концентрируя на этом много внимания. А запуск космического корабля с его научными приборами стоит недешево. Не излишняя ли это роскошь — исследования ближнего космоса на таком ювелирном уровне? Тем более что даже доскональное его изучение привести к пересмотру фундаментальных законов физики не может, специалисты в этом единодушны: ближний космос живет по тем же самым физическим законам, что и Земля.
Другое дело — дальние космические полеты. Они недаром так интригуют фантастов. Очень может быть, что путешествия к далеким мирам потребуют уточнения наших представлений о фундаментальном в физике. Прогноз обстановки в космосе для корабля, отправляющегося в дальний рейс, совершенно необходим: такой корабль не отзовешь с орбиты в случае непредвиденных обстоятельств. Но мне погрузиться в эту область исследований мешало ощущение ее замкнутости: надо–де с помощью космических кораблей изучать космическое пространство, чтобы в нем могли летать другие космические корабли, исследуя то же пространство. До получения фундаментальных выводов, казалось, так далеко.
И потом, как знать, по какому пути пойдет развитие космической техники. Служили же людям на Земле парусные корабли, для которых неожиданно долгий штиль был равносилен аварии. Но задолго до появления радио и надежного прогноза погоды парусники уступили место пароходам, которым прогноз штилевой ситуации не важен.
Одни из моих товарищей, окончивших Московский университет, как и я, по специальности «атомная физика», вовсю включились в термоядерные исследования, другим Удалось путем измерений электропроводности при плавном изменении температуры точно засечь почти неуловимый миг перехода жидкого металла в плазму, проводящий газ. Знаменитая проблема перехода от жидкости к газу, одинаковость химических и такая разница физических свойств… Я же, занимаясь радиационными поясами, чувствовала себя не у дел. Вспоминала шутку нашего заведующего кафедрой Л. А. Арцимовича, ставшую потом такой знаменитой (она — эпиграф к этой главе), и видела, что нет у меня достаточного любопытства к одиноким энергичным частицам, чтобы иметь моральное право удовлетворять его за казенный счет.
К счастью для меня, наука о ближнем космосе быстро развивалась. Открылись частицы меньших энергий — космическая плазма, заполняющая околоземное пространство и активно влияющая на магнитные поля в нем. Плазма, которая смыкает верхнюю атмосферу Земли с солнечным ветром, в конечном счете с атмосферой Солнца.
Частицы радиационных поясов не перестали интересовать космофизиков. От этих энергичных и подвижных частиц зависит надежность и продолжительность работы бортовой аппаратуры спутников, которых в космосе становится все больше. Радиационные пояса находятся в области дипольного магнитного поля Земли, а область эта под воздействием солнечного ветра то увеличивается, то сокращается в размерах. Поэтому по показаниям счетчиков этих частиц можно определить, находится ли спутник в области дипольного поля или за ее пределами. Таким образом, знание физики радиационных поясов помогает изучать и процессы, в которых главные действующие лица — низкоэнергичная плазма магнитосферы и солнечный ветер. Различные явления в космосе оказались интригующе и тонко связаны между собой.
Круг проблем, стоящих перед космофизикой, непрерывно расширяется. Теперь уже от коллег, работающих в других областях физики, приходится слышать чуть завистливое: «У вас тема живая!»
И все–таки… Мы изучаем процессы, порождающие магнитные возмущения на Земле. Самый мощный их вид — магнитные бури, во время которых магнитное поле меняется всего лишь на несколько сотых долей своей величины. Впрочем, и само дипольное поле Земли… Небольшой постоянный магнитик создает между полюсами поле, раз в двести более сильное, а из таких магнитов делают, между прочим, магнитные защелки для шкафов! В лабораториях постоянные магнитные поля в сто тысяч раз сильнее естественного земного не редкость. Говорят, магнитная буря по энергии эквивалентна взрыву мегатонного термоядерного заряда. Но действие ее распространяется на огромную область космического пространства. Настолько огромную, что впечатляющие цифры имеют мало отношения к происходящему в данном месте.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.