Небесные сполохи и земные заботы - [16]
В космофизике действительно результаты устаревают довольно быстро. Техника наземных наблюдений становится все лучше и дает возможность уже сейчас вести непрерывное слежение за космосом, спутники и ракеты загружаются все большим количеством приборов, позволяющих проводить комплексные исследования. Хотя прямое изучение околоземного пространства продолжается не так давно, многие работы первооткрывателей, которые лишь прощупывали космос, из–за своей отрывочности уже превратились просто в исторические документы. Наверное, так же разом теряли свою научную ценность отчеты географов–первопроходцев, как только по их следам проходила армия топографов.
На этом фоне кажется удивительной судьба одной концепции, которая была выдвинута в 1961 году, в самом начале космической эры, она легко и изящно предсказывала важнейшие явления в околоземном пространстве, впо–следствие действительно открытые, послужила отправной точкой множества исследований. И все 20 с лишним лет носит скромное название гипотезы.
Первые попытки ее опровергнуть были предприняты, по существу, всего лишь несколько лет назад. Эти попытки носят пока еще частный характер, выводы разных критиков не согласуются между собой. Но даже те, кто в чем–то с ней не согласен, широко используют ее как наглядную схему, позволяющую связать воедино, держать в памяти, обсуждать многообразные сведения о магнитосфере. Эту гипотезу выдвинул английский астрофизик Данжи.
При упоминании этого имени космофизики разных школ и направлений ведут себя очень похоже. Скажут: «Да… Данжи…» — и задумаются. У кого на лице восхищение («Надо же так: одно наглядное соображение, показ, так сказать, на пальцах, и такие далеко идущие выводы, причем опыт подтверждает их!»); у кого удивление («Почему так получается, как может простенькая исходная посылка развернуться в описание таких разнообразных явлений?»); у кого стыдливость («До сих пор наука не нашла чем заменить или как отменить этот показ на пальцах!»).
Гипотеза Данжи — ключ к пониманию физики магнитосферы, и с ней стоит познакомиться.
Физические законы выражаются уравнениями. Но, по словам английского гидромеханика Моффата, «основные уравнения физики могут содержать все сведения о мире, но эти уравнения скрытны и неохотно отдают заключенные в них сведения». Кажется невозможно ни в чем разобраться, не прибегая к сложным математическим формулам. «Однако в основе любой физической теории лежат не формулы, а идеи», — это свидетельство А. Эйнштейна. Концепция Данжи — именно идея. Ее может воспринять Даже неспециалист. Мне хочется представить ее читателю от начала до конца еще и потому, что это редкий случай дать некосмофизикам точную научную информацию, так сказать, без деформации.
Данжи стал рассматривать вещество, заполняющее околоземное пространство, как сплошную среду с некоторым электрическим сопротивлением.
— Позвольте, — непременно прервет меня здесь читатель, — какая среда в магнитосферу? Когда столько толковали о радиационных поясах, говорили о невзаимодействующих частицах. А теперь оказалось, что магнитосфера заполнена средой. Понятно, что космос — не абсолютная пустота, какие–то частицы там есть, но частицы, летающие каждая сама по себе, и среда, которая движется как единое целое, — это совсем не одно и то же!
Действительно, с этим не все гладко. Даже если учесть, что космос в основном заполнен заряженными частицами (а такие частицы оказывают друг на друга электрическое и магнитное воздействия на огромных по сравнению с их размерами расстояниях), остается вопрос: насколько все же сильны эти воздействия? Увы! Непосредственно измерить их с борта космического корабля практически невозможно, поскольку его приборы не дают нам достаточно подробной информации о частицах, удаленных от корабля.
Остается обратиться к теории. А там пока тоже нет ответа…
Кто–то сказал, что если физика–теоретика просят дать математическое описание стола, то он очень быстро находит решение для случая стола без ножек и для случая стола с бесконечным числом ножек, а потом долго и безуспешно бьется над задачей о столе с четырьмя ножками.
Эту шутку вполне можно отнести и к теоретикам–космофизикам.
Плазма магнитосферы очень разрежена, но не настолько, чтобы частицы можно было считать невзаимодействующими друг с другом. Математические методы описания такой плазмы еще не разработаны. Поэтому теоретикам приходится подбираться, так сказать, с одного из двух противоположных концов: либо рассматривать ее как состоящую из отдельных, прямо не связанных между собою частиц (вот он, стол без ножек), либо, наоборот, как некую сплошную среду вроде жидкости, в которой «индивидуальность», то есть положение, скорость и прочее, каждой частицы вообще не выделяется (стол с бесконечным числом ножек). Какой из этих двух противоположных подходов лучше для описания данного явления, выясняется часто лишь на конечном этапе теоретического исследования, при сравнении результата расчета и наблюдений. Например, мы уже видели, что с помощью «одночастичного» подхода можно понять природу радиационных поясов Земли. Как мы увидим сейчас, другой способ описания реальной плазмы, который уподобляет ее проводящей жидкости, позволяет составить представление о важнейших глобальных процессах в космосе.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.