Наука о данных. Базовый курс - [5]

Шрифт
Интервал

История анализа данных

Статистика — это научная отрасль, которая занимается сбором и анализом данных. Первоначально статистика собирала и анализировала информацию о государстве, такую как демографические данные и экономические показатели. Со временем количество типов данных, к которым применялся статистический анализ, увеличивалось, и сегодня статистика используется для анализа любых типов данных. Простейшая форма статистического анализа — обобщение набора данных в терминах сводной (описательной) статистики (включая средние значения, такие как среднее арифметическое, или показатели колебаний, такие как диапазон). Однако в XVII–XVIII вв. работы Джероламо Кардано, Блеза Паскаля, Якоба Бернулли, Абрахама де Муавра, Томаса Байеса и Ричарда Прайса заложили основы теории вероятностей, и в течение XIX в. многие статистики начали использовать распределение вероятностей как часть аналитического инструментария. Эти новые достижения в математике позволили выйти за рамки описательной статистики и перейти к статистическому обучению. Пьер-Симон де Лаплас и Карл Фридрих Гаусс — два наиболее видных математика XIX в. Оба они внесли заметный вклад в статистическое обучение и современную науку о данных. Лаплас использовал интуитивные прозрения Томаса Байеса и Ричарда Прайса и превратил их в первую версию того, что мы сейчас называем теоремой Байеса. Гаусс в процессе поиска пропавшей карликовой планеты Цереры разработал метод наименьших квадратов. Этот метод позволяет нам найти наилучшую модель, которая соответствует набору данных, так что ошибка в ее подборе сводится к минимальной сумме квадратов разностей между опорными точками в наборе данных и в модели. Метод наименьших квадратов послужил основой для статистических методов обучения, таких как линейная регрессия и логистическая регрессия, а также для разработки моделей нейронных сетей искусственного интеллекта.

Между 1780 и 1820 гг., примерно в то же время, когда Лаплас и Гаусс вносили свой вклад в статистическое обучение, шотландский инженер Уильям Плейфер изобрел статистические графики и заложил основы современной визуализации данных и поискового анализа данных (EDA). Плейфер изобрел линейный график и комбинированную диаграмму для временных рядов данных, гистограмму, чтобы проиллюстрировать сравнение значений, принадлежащих разным категориям, и круговую диаграмму для наглядного изображения долей. Преимущество визуализации числовых данных заключается в том, что она позволяет использовать наши мощные зрительные возможности для обобщения, сравнения и интерпретации данных. Следует признать, что визуализировать большие (с множеством опорных точек) или сложные (с множеством атрибутов) наборы данных довольно трудно, но визуализация по-прежнему остается важной составляющей науки о данных. В частности, она помогает ученым рассматривать и понимать данные, с которыми они работают. Визуализация также может быть полезна для презентации результатов проекта. Со времен Плейфера разнообразие видов графического отображения данных неуклонно росло, и сегодня продолжаются разработки новых подходов в области визуализации больших многомерных наборов данных. В частности, не так давно был разработан алгоритм стохастического вложения соседей с t-распределением (t-SNE), который применяется при сокращении многомерных данных до двух или трех измерений, тем самым облегчая их визуализацию.

Развитие теории вероятностей и статистики продолжилось в XX в. Карл Пирсон разработал современные методы проверки гипотез, а Рональд Фишер — статистические методы для многомерного анализа и предложил идею оценки максимального правдоподобия статистических заключений как метод, позволяющий делать выводы на основе относительной вероятности событий. Работа Алана Тьюринга во время Второй мировой войны привела к изобретению компьютера, который оказал исключительно сильное влияние на статистику, позволив совершать существенно более сложные вычисления. В течение 1940-х гг. и в последующие десятилетия были разработаны важные вычислительные модели, которые до сих пор широко применяются в науке о данных. В 1943 г. Уоррен Мак-Каллок и Уолтер Питтс предложили первую математическую модель нейронной сети. В 1948-м Клод Шеннон опубликовал статью под названием «Математическая теория связи» и тем самым основал теорию информации. В 1951 г. Эвелин Фикс и Джозеф Ходжес предложили модель дискриминантного анализа (который сейчас более известен как теория распознавания образов), ставшую основой современных алгоритмов ближайших соседей. Послевоенное развитие сферы достигло кульминации в 1956 г. с появлением отрасли искусственного интеллекта на семинаре в Дартмутском колледже. Даже на этой ранней стадии ее развития термин «машинное обучение» уже начал использоваться для описания программ, которые давали компьютеру возможность учиться на основе данных. В середине 1960-х гг. были сделаны три важных вклада в машинное обучение. В 1965 г. Нильс Нильсон опубликовал книгу «Обучающиеся машины»[1], в которой показано, как можно использовать нейронные сети для обучения линейных моделей классификации. Через год Хант, Марин и Стоун разработали систему концептуального обучения, породившую целое семейство алгоритмов, которые, в свою очередь, привели к появлению деревьев решений на основе данных нисходящего порядка. Примерно в то же время независимые исследователи разрабатывали и публиковали ранние версии


Рекомендуем почитать
Игродром. Что нужно знать о видеоиграх и игровой культуре

Жизнь современного человека плотно связана с видеоиграми. Даже если вы не играете сами, в вашем окружении наверняка найдутся заядлые геймеры, а новости из индустрии игр зачастую не обходят и вас стороной. Это положение дел приводит к вопросам: а что же такое видеоигры и какое место они занимают в жизни человека? Поиском ответов на них занимается дисциплина game studies. Александр Ветушинский – один из ведущих российских представителей этого направления исследований. Его книга «Игродром» – философское осмысление этапов развития игровой индустрии, анализ.


Выразительный JavaScript

В процессе чтения вы познакомитесь с основами программирования и, в частности, языка JavaScript, а также выполните несколько небольших проектов. Один из самых интересных проектов — создание своего языка программирования.


Справка по SQL

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Обработка баз данных на Visual Basic.NET

Это практическое руководство разработчика программного обеспечения на Visual Basic .NET и ADO.NET, предназначенное для создания приложений баз данных на основе WinForms, Web-форм и Web-служб. В книге описываются практические способы решения задач доступа к данным, с которыми сталкиваются разработчики на Visual Basic .NET в своей повседневной деятельности. Книга начинается с основных сведений о создании баз данных, использовании языка структурированных запросов SQL и системы управления базами данных Microsoft SQL Server 2000.


S. D. F.

Если вам интересен SQL, и знаком Delphi, давайте поразвлекаемся программированием.


MySQL: руководство профессионала

Это не совсем книга. Просто по ходу работы и изучения пакета у меня накопилось немало заметок, которые я в конце концов собрал воедино и опубликовал с оглавлением и под единым названием. Данные заметки относятся к версиям 4 и 5 пакета MySQL. По ходу текста особо отмечены места, относящиеся к специфической версии пакета.