Наука и жизнь, 2000 № 05 - [3]

Шрифт
Интервал


К 1992 году в США был подготовлен грандиозный проект по созданию обсерватории для поиска гравитационных волн с использованием лазерных интерферометров — ЛИГО (LIGO — Laser Interferometer Gravitational-Wave Observatory) общей стоимостью более двухсот миллионов долларов. В его осуществлении приняли участие ученые и инженеры двух крупнейших научных центров США — Калифорнийского и Массачусетского технологических институтов, специалисты из промышленности, из Колорадского, Стэнфордского и Сиракузского университетов. Технология для ЛИГО разрабатывалась двадцать лет. За это время было построено и исследовано несколько вариантов лазерных интерферометров, изготовлено уникальное помехозащитное оборудование и отработан окончательный вариант всей системы, на которой планируется проводить обширные исследовательские программы.

Проект ЛИГО ставит своей целью экспериментально изучить проблему нелинейной гравитации, черных дыр и гравитонов, выведя ее из сферы теоретических построений, и подтвердить, что пульсации кривизны пространства-времени — гравитационные волны — существуют. ЛИГО может позволить исследователям сделать заключение о величине спина (собственного момента количества движения) гравитона. По разнице во времени прибытия электромагнитных и гравитационно-волновых всплесков от одного удаленного события гравитационная обсерватория позволит определить, одинаковы ли скорости этих волн. Если они приходят одновременно, гравитон, как и предсказывает теория, имеет нулевую массу покоя.

Особенность проекта ЛИГО — возможность использования нескольких интерферометров и создания таких оптических схем, в которых одна и та же пробная масса служит общей для двух или нескольких интерферометров.

Сигналы от двойных или нейтронных звезд могут приходить в частотном диапазоне, простирающемся от очень низких частот до примерно 1 кГц. Созданная аппаратура может воспринимать частоты от 40 Гц до нескольких килогерц с максимумом чувствительности на частоте 100 Гц. Исследователи ожидают, что их уникальная установка, открывающая новое поколение гравитационных телескопов, позволит получить фундаментальные результаты, приближающие нас к разгадке многих тайн Вселенной.


ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ

Как ловят гравитоны

В основу гравитационного детектора положена схема интерферометра Майкельсона (см. рисунок на стр. 7). Пучок света от источника направляется на полупрозрачную пластинку — светоделитель СД, расщепляющий пучок на два луча 1 и 2, которые приходят к зеркалам М>1 и М>2. После отражения они вновь возвращаются к светоделителю, который повторно делит каждый из них на две части. Отраженная часть пучка 1 возвращается к источнику, а прошедшая — поступает на фотоприемник; прошедшая часть пучка 2, наоборот, возвращается к источнику, а отраженная — поступает на приемник. Таким образом, на приемнике совмещаются (как говорят, рекомбинируют) два пучка, прошедшие различные расстояния (до зеркал М>1 и М>2 и обратно). В плоскости фотоприемника возникает интерференционная картина, вид которой зависит от степени параллельности совмещенных пучков. Если пучки строго параллельны, картина имеет вид одного светлого или темного пятна (в зависимости от разности хода пучков). При небольшом угле между пучками (более реальный случай) картина представляет собой систему светлых и темных полос: в тех местах, для которых разность хода оказывается равной четному числу полуволн света (фазы колебаний в пучках совпадают), волны усиливают одна другую, и образуется светлая полоса, а там, где разность хода равна нечетному числу полуволн (фазы отличаются на 180°), пучки «гасят» друг друга, и образуется темная полоса. Если одно из зеркал перемещать вдоль луча света, разность хода начнет изменяться, а вся система интерференционных полос — двигаться в плоскости приемника. Ограничив «поле зрения» приемника диафрагмой шириной немного менее одной полосы, получим, что при перемещении зеркала на приемник поступит то светлая, то темная полоса, т. е. станет периодически меняться интенсивность света от максимума до минимума, а на выходе фотоприемника появится синусоидальный электрический сигнал. Максимумы или минимумы сигнала будут повторяться при изменении разности хода на длину волны света λ, т. е. при перемещении зеркала на λ/2.

В гравитационном детекторе используется интерферометр Майкельсона с четырьмя пробными массами, подвешенными вблизи начала и в конце каждого из двух плеч интерферометра. Расстояния L>1 и L>2 между пробными массами в обоих плечах почти одинаковы (L>1 ~= L>2 = L). Пробные массы могут свободно двигаться в горизонтальной плоскости. Гравитационная волна, падающая перпендикулярно плоскости интерферометра, смещает массы, растягивая одно плечо, сжимая другое и изменяя, таким образом, разность длин плеч (разность хода пучков) ΔLL>1L>2. В общем случае будет наблюдаться изменение относительной разности длин плеч: L(t)/L = h(t). Величину h(t) можно назвать гравитационно-волновым смещением. Относительное движение пробных масс, вызываемое волной, пропорционально расстоянию между ними, и это весьма важное обстоятельство использовано в интерферометре — длина его плеч составляет 4 км. Лазерный интерферометр отслеживает изменение длин плеч


Еще от автора Журнал «Наука и жизнь»
Журнал "Наука и жизнь", 2000 № 06

«Наука и жизнь» − старейший и самый известный научно-популярный журнал России.


Наука и жизнь, 1980 № 01

«Наука и жизнь» − старейший и самый известный научно-популярный журнал России.


Наука и жизнь, 2000 № 02

«Наука и жизнь» − старейший и самый известный научно-популярный журнал России.


Наука и жизнь, 2000 № 04

«Наука и жизнь» − старейший и самый известный научно-популярный журнал России.


Наука и жизнь, 1999 № 01

Ежемесячный научно-популярный журнал.


Наука и жизнь, 2000 № 01

«Наука и жизнь» − старейший и самый известный научно-популярный журнал России.


Рекомендуем почитать
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.