Наука и удивительное - [35]

Шрифт
Интервал

До создания квантовой механики ученые полагали, что существует особая «химическая сила», ответственная за химическую связь. Эта сила должна была обладать совершенно особыми свойствами, так как некоторые атомы соединяются друг с другом очень хорошо, а другие совсем не соединяются. Например, если два атома водорода и один атом кислорода соединились, образовав одно целое, молекулу воды, то к ней уже нельзя присоединить добавочный атом. Молекула насыщена; химические силы как бы исчезли и не могут больше действовать на другие атомы.

Квантовая механика дала полное объяснение химическим явлениям. Здесь не действует никакая новая сила. Химическая связь между атомами возникает в результате взаимодействия электронных конфигураций различных атомов. Химическая связь возникает тогда, когда эти конфигурации хорошо подходят друг другу, как зубцы шестерни или куски разрезанной картины в головоломке. Конфигурации смешиваются и переплетаются, когда атомы приведены в соприкосновение, и в результате появляются новые конфигурации.

Одни атомные конфигурации очень хорошо подходят друг другу, другие — не так хорошо. Химическая связь очень сильно зависит от рода соединяющихся атомов. Иногда атомы подходят друг к другу так хорошо, что при их сближении возникает одна крупная округлая единица, напоминающая первую картину на рис. 28, но только несколько большая и более компактная.

Рис. 28. Два атома водорода, каждый с простейшей электронной конфигурацией (см. фото V), образует молекулу водорода, в которой обе электронные конфигурации сливаются в одну эллиптическую. Точки в центре — ядра водорода.


В этих случаях образуется насыщенная молекула, не присоединяющая других атомов. Насыщенная молекула напоминает сложенную из кусков картину-головоломку, все части которой находятся на своих местах и где нет места еще каким-то кусочкам.

Так как это происходит от соединения и смешивания электронных волновых картин, химическая связь в своей основе имеет электрическую природу. Ее прочность обусловлена квантовой устойчивостью совокупной электронно-волновой картины образовавшейся молекулы. Рассмотрение различных конфигураций, показанных на фото V, позволяет легко понять, что существуют многочисленные способы соединения и переплетения электронных конфигураций. Вследствие этого мы ожидаем, что есть множество химических соединений разных типов.

Молекулы

Рассмотрим несколько специальных примеров. Среди многих способов, которыми соединяются атомы друг с другом, можно выделить связи двух важнейших типов. Один из них — связь типа «электронные близнецы», другой — типа «затычка и дыра»[39]. Характерный пример связи первого типа — связь в самой простой молекуле — молекуле водорода Н>2, состоящей всего из двух атомов водорода. Здесь две электронные картины, по одной от каждого атома, сливаются в одну новую картину, в результате чего сами атомы соединяются (см. рис. 28). Это слияние как будто противоречит принципу Паули, согласно которому каждую данную конфигурацию может принять только один электрон. На самом же деле противоречия нет; электрон обладает еще одним интересным свойством, о котором мы упомянем здесь только мимоходом: он вращается вокруг собственной оси. Это вращение называется электронным спином. Далее, здесь возможны только два вида вращения — вправо и влево вокруг данной оси. Поэтому каждую электронную картину надо считать дважды, потому что ее может принимать электрон, вращающийся как в одну, так и в другую сторону. Следовательно, два электрона могут принимать одну и ту же конфигурацию, только если они вращаются в противоположных направлениях. Вот почему электронный спин совместно с принципом Паули играет столь важную роль: две и только две электронные конфигурации могут слиться в одну общую. Молекула водорода может состоять только из двух атомов, но не из трех. Химическая связь становится насыщенной при наличии двух электронов на одной орбите.

Характерным примером связи типа «затычка и дыра» служит связь в молекуле воды Н>2O, состоящей из одного атома кислорода и двух атомов водорода. Атом кислорода имеет 8 электронов. Но оказывается, что 10 электронов, обращающихся вокруг ядра, образуют очень компактную и округлую совокупность. Элемент неон, имеющий 10 электронов, химически очень неактивен и не образует никаких молекул, но в атоме кислорода до этой компактной конфигурации не хватает двух электронов. Поэтому ансамбль из 8 электронов можно описать как компактную округлую конфигурацию с двумя дырками в ней. Форма дырки определена, она отвечает конфигурации недостающего электрона. В случае кислорода дырки простираются от поверхности конфигурации до ее центра и расположены под прямым углом одна к другой (рис. 29, а).

Рис. 29. Атом кислорода (а) и молекула воды (б). электронная конфигурация кислорода имеет две дырки, простирающиеся от ее поверхности до ядра и расположенные под прямым углом. В молекуле воды дырки в кислородном атоме «затыкаются» электронами водорода. Ядра водорода заключены внутри электронных конфигураций водорода (маленькие черные кружки — ядра водорода, большой черный кружок — ядро кислорода).


Рекомендуем почитать
Краткая история Венгрии. С древнейших времен до наших дней

В книге рассказывается о важнейших событиях древней и современной истории Венгрии: социально-экономических, политических, культурных. Монография рассчитана на широкий круг читателей.


Березники - город уральских химиков

Брошюра посвящена городу Березники - центру химической промышленности.


Битва за Днепр

Красной Армии пришлось форсировать Днепр на огромном фронте, протяжением в 700 километров, и именно там, где он наиболее широк и многоводен, т. е. на среднем и нижнем его течении. Огромную трудность представляло то, что возвышенный западный берег, находившийся в руках противника и заранее подготовленный им к обороне, господствует над восточным берегом. Перед Красной Армией на противоположном берегу могучей реки стоял сильный, оснащённый всеми средствами современной военной техники противник, оборонявшийся с предельным упорством и ожесточением.


Победители Арктики: Героический поход «Челюскина»

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Севастопольское восстание

Севастопольское восстание — вооружённое выступление матросов Черноморского флота и солдат Севастопольского гарнизона, рабочих порта и Морского завода, произошедшее во время первой русской революции с 11 (24) ноября по 15 (28) ноября 1905 года.


Демонтаж коммунизма. Тридцать лет спустя

Эта книга посвящена 30-летию падения Советского Союза, завершившего каскад крушений коммунистических режимов Восточной Европы. С каждым десятилетием, отделяющим нас от этих событий, меняется и наш взгляд на их последствия – от рационального оптимизма и веры в реформы 1990‐х годов до пессимизма в связи с антилиберальными тенденциями 2010‐х. Авторы книги, ведущие исследователи, историки и социальные мыслители России, Европы и США, представляют читателю срез современных пониманий и интерпретаций как самого процесса распада коммунистического пространства, так и ключевых проблем посткоммунистического развития.