Нанонауки. Невидимая революция - [30]

Шрифт
Интервал

ЯВЛЕНИЕ МОЛЕКУЛ-МАШИН

Раз уж появились идеи о монументальных молекулах и о молекулах-машинах, а затем и теоретические разработки «виртуальных» молекул-приборов и молекул-установок, то, надо думать, вскоре должны были появиться и первые молекулы-установки «во плоти». Пока что речь не шла о процессоре для компьютера, но эти молекулы-приборы уже умели выполнять кое-какие измерения в «мире внизу». Давайте для начала откроем учебник по физике середины XX века. Там мы найдем немало приборов, придуманных для изучения еще недостаточно исследованных физических явлений. Вот, к примеру, прибор, замеряющий, как меняется проводимость полупроводника или его способность усиливать электрический сигнал в зависимости от температуры, а сам этот прибор сделан из вживленного в поверхность полупроводника кусочка оргстекла с металлизированной поверхностью — то есть, в сущности, это транзистор. А раз уж нанотехнология переворачивает вверх ногами весь порядок производства, то, значит, есть шанс создать нечто новое, где все монтажные точки и узелки будут заменены одиночными молекулами и каждая такая молекула станет и оборудованием, которое используется в эксперименте, и объектом, изучаемым в этом эксперименте.

ПРОВОД…

Первой молекулой-установкой, созданной для физического опыта, стал молекулярный провод — цепочка молекул с четырьмя молекулярными лапками. Придумали этот проводник в 1997 году я и Андре Гурдон из Центра структурных исследований и разработки материалов (CEMES). Своему детищу мы дали имя Lander, Приземляющийся, — потому что думали о маленьком роботе Sojourner, которого как раз в то лето НАСА отправило на космическом зонде Mars Pathfinder на Марс. Андре занялся синтезированием молекул чуть позже посадки зонда на Марс.

В своем эксперименте мы хотели измерить электропроводность молекулярного проводника. А четыре ножки, которые мы приделали к этому проводку, приподнимали его над металлической поверхностью, чтобы не возникали токи утечки. Да и игле туннельного микроскопа легче перемещать этот проводок на лапках по ровной металлической поверхности. Зато стало куда труднее установить электрический контакт с обоими кончиками проводка. Ничего не поделаешь, трудности бывают всегда — не одно, так другое. Чтобы обойти это препятствие, мы решили воспользоваться неким свойством процесса обработки металлических поверхностей: дело в том, что по ходу подготовки металлической поверхности фазы прокаливания чередуются с фазами протравливания, и в итоге получаются большие и ровные, но ступенчатые плоскости. Если подобрать температуру обработки, то можно получить площадку, кончающуюся уступом высотой в один слой атомов (то есть высотой в один атом). Обнаружение такой ступеньки с помощью туннельного микроскопа труда не составит. А если мы отыщем такую тонюсенькую ступеньку, то, наверное, удастся, манипулируя иглой микроскопа, расположить молекулярный проводок поперек этой ступеньки, а потом, понемногу толкая проводок, добиться, чтобы его кончик оказался над ступенькой. Напомним, что проводник — на лапках и потому не прикасается к поверхности. Но кончик над ступенькой изгибается и, следовательно, взаимодействует с нею. То есть один электрический контакт — проводника с металлической поверхностью — есть. Второй контакт возникает между вторым концом проводка и иглой туннельного микроскопа — если ее кончик установить точно над кончиком провода.

В этом опыте металлическая поверхность служила лабораторным столиком, а молекула — экспериментальной установкой, позволяющей так расположить молекулярный проводок, чтобы можно было замерить его сопротивление, тогда как игла микроскопа продолжала руку физика-экспериментатора. Первым сумел переместить наш Lander Джим Гимжевски в 1998 году, в своей лаборатории IBM под Цюрихом. Он смог передвинуть проводник, как и предлагалось, на ступеньку и замерить электрическое сопротивление контакта между ступенькой и кончиком молекулярного проводка. Сопротивление оказалось слишком высоким, чтобы ток надежно протекал по проводку. Иначе говоря — контакт скверный, и это из-за ножек: уж очень они высокие, и потому проводок оказывается излишне приподнятым над поверхностью. И из-за этого близ кончика провода происходят ненужные химические реакции, затрудняющие надежный обмен электронами. Изменив химический состав контакта, мы смогли уменьшить его сопротивление раз в десять. Еще сильнее оно уменьшилось, когда мы укоротили ножки проводка, а затем мы постарались получше наладить контакт со вторым концом провода — чтобы измерить сопротивление как можно точнее.

А потом мы придумали молекулу-прибор посложнее. Речь идет о молекуле, которая стала амперметром, то есть прибором, способным замерить силу тока, протекающего, для примера, через молекулярный проводок. Молекулу эту надо подключить к металлическому электроду — для каждой из двух концов молекулы, следовательно, понадобится свой электрод. Принцип таков: электрический ток протекает по главной ветви, достаточно длинной, чтобы в нее можно было вставить маленькое химическое соединение, способное вращаться, — ротор. Когда электрон проходит через молекулу, перемещаясь от электрода на одном конце молекулы к электроду второго ее конца, то внутри молекулярного проводника рассеивается некоторое, пусть очень малое, количество энергии. Этой энергии, однако, хватает на нагрев химического ротора, который под воздействием тепла поворачивается. Угол поворота удается замерить, если поместить еще один — третий — электрод сбоку от ротора. А зная угол, на который повернулся ротор, экспериментатор может оценить силу тока, протекающего через главную ветвь цепи, то есть через молекулу-провод.


Рекомендуем почитать
Животные защищаются

Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.


Последний рейс "Лузитании"

В 1915 г. немецкая подводная лодка торпедировала один из.крупнейших для того времени лайнеров , в результате чего погибло 1198 человек. Об обстановке на борту лайнера, действиях капитана судна и командира подводной лодки, о людях, оказавшихся в трагической ситуации, рассказывает эта книга. Она продолжает ставшую традиционной для издательства серию книг об авариях и катастрофах кораблей и судов. Для всех, кто интересуется историей судостроения и флота.


Три аксиомы

О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.


Как мы едим. Как противостоять вредной еде и научиться питаться правильно

Разговор о том, что в нашем питании что-то не так, – очень деликатная тема. Никто не хочет, чтобы его осуждали за выбор еды, именно поэтому не имеют успеха многие инициативы, связанные со здоровым питанием. Сегодня питание оказывает влияние на болезни и смертность гораздо сильнее, чем курение и алкоголь. Часто мы едим нездоровую еду в спешке и с трудом понимаем, как питаться правильно, что следует ограничить, а чего нужно потреблять больше. Стремление к идеальному питанию, поиск чудо-ингредиента, экстремальные диеты – за всем этим мы забываем о простой и хорошей еде.


Советский воинский долг и религия

Как коммунистическая и религиозная идеологии относятся к войне и советскому воинскому долгу? В чем вред религиозных предрассудков и суеверий для формирования морально-боевых качеств советских воинов? Почему воинский долг в нашей стране — это обязанность каждого советского человека защищать свой народ и его социалистические завоевания от империалистической агрессии? Почему у советских людей этот воинский долг становится их внутренней нравственной обязанностью, моральным побуждением к самоотверженной борьбе против врагов социалистической Родины? Автор убедительно отвечает на эти вопросы, использует интересный документальный материал.


Мир после нас. Как не дать планете погибнуть

Способны ли мы, живя в эпоху глобального потепления и глобализации, политических и экономических кризисов, представить, какое будущее нас ждет уже очень скоро? Майя Гёпель, доктор экономических наук и общественный деятель, в своей книге касается болевых точек человеческой цивилизации начала XXI века – массового вымирания, сверхпотребления, пропасти между богатыми и бедными, последствий прогресса в науке и технике. Она объясняет правила, по которым развивается современная экономическая теория от Адама Смита до Тома Пикетти и рассказывает, как мы можем избежать катастрофы и изменить мир в лучшую сторону, чтобы нашим детям и внукам не пришлось платить за наши ошибки слишком высокую цену.


Империя звезд, или Белые карлики и черные дыры

Артур Миллер, известный американский историк науки (сейчас живет в Лондоне), повествует о выдающихся открытиях астрофизиков XX века. В центре рассказа — судьба индийского физика, лауреата Нобелевской премии Субрахманьяна Чандрасекара, чьи теории во многом сформировали наши сегодняшние представления о Вселенной. Книга Миллера — об эволюции звезд, о белых карликах, красных гигантах, нейтронных звездах и о самых таинственных космических объектах — черных дырах, жадно пожирающих материю и энергию.


Десять величайших открытий в истории медицины

В истории медицины были открытия, без которых она никогда не стала бы современной наукой, способной порой творить настоящие чудеса и вылечивать даже самые тяжелые болезни. Именно о таких открытиях и рассказывают известные американские врачи кардиолог Мейер Фридман и радиолог Джеральд Фридланд. Повествуя о выдающихся ученых, об их жизни и об их времени, об их предшественниках и последователях. авторы создают яркие образы великого анатома Везалия, открывателя мира бактерий Левенгука, борцов с инфекционными болезнями Пастера и Коха.


Эврики и эйфории. Об ученых и их открытиях

Знания всегда давались человечеству нелегко. В истории науки было все — драматические, а порой и трагические эпизоды соседствуют со смешными, забавными моментами. Да и среди ученых мы видим самые разные характеры. Добрые и злые, коварные и бескорыстные, завистливые и честолюбивые, гении и талантливые дилетанты, они все внесли свой вклад в познание мира, в котором мы живем.Уолтер Гратцер рассказывает о великих открытиях и людях науки честно и объективно, но при этом ясно: он очень любит своих героев и пишет о них с большой симпатией.


Мозг онлайн. Человек в эпоху Интернета

Сегодня мы уже не можем себе представить жизнь без компьютеров и Интернета. Каждый день возникают все новые и новые гаджеты, которые во многом определяют наше существование — нашу работу, отдых, общение с друзьями. Меняются наши реакции, образ мышления. Известный американский психиатр, профессор Лос-Анджелесского университета и директор Научного центра по проблемам старения Гэри Смолл вместе со своим соавтором (и женой) Гиги Ворган утверждают: мы наблюдаем настоящий эволюционный скачок, и произошел он всего за пару-тройку десятилетий!В этой непростой ситуации, говорят авторы, перед всем человечеством встает трудная задача: остаться людьми, не превратившись в придаток компьютера, и не разучиться сопереживать, общаться, любить…