Наблюдения и озарения, или Как физики выявляют законы природы - [81]

Шрифт
Интервал

Но есть и другие квазичастицы, строение которых не сводится к перестройке только шубы, и проще всего начать их рассмотрение со звуковых волн в кристалле (И. Е. Тамм). Здесь, как и в струне, возникают условия резонанса — звук ведь передается колебаниями атомов, а их частоты зависят от характеристик этих атомов и от расстояний между ними (резонатором является сама кристаллическая решетка). Поэтому естественными для кристалла являются только определенные частоты, на каждой из которых могут быть сосредоточены различные энергии, а энергия, импульс и частота будут связаны соотношениями Планка-Эйнштейна, в которых скорость света заменяется скоростью звука — такую «частицу» естественно, по аналогии с фотоном, назвать фононом (от греческого «фоне» — звук). Тогда, например, нагрев можно представить как возбуждение всех таких колебаний, но с разными амплитудами — в соответствии со статистическим распределением Больцмана и т. п.

В проводящих средах, где происходят колебания и движения зарядов, такие явления можно рассматривать как процессы, связанные с возникновением, движением и взаимодействием квазичастиц «плазмонов». Так, например, можно рассмотреть взаимодействие звуковых или тепловых волн с зарядами как взаимодействие фононов и плазмонов. Вводится и квазичастица «магнон», описывающая волны, связанные с колебаниями спинов — от их величины, упорядоченности и направленности зависят магнитные поля в средах. Дырки в кристаллах (места отсутствующих положительных ионов), которые могут «путешествовать» по нему за счет последовательного перехода в дырку соседних частиц, могут связаться с электроном и образовать так называемый экситон — еще одну квазичастицу и т. д.

Таким образом, вместо того чтобы рассматривать слабые возбуждения в среде, состоящей из огромного количества атомов, молекул, ионов, электронов, рассматривают сравнительно небольшое количество элементарных возбуждений-квазичастиц. (Такой подход, очевидно, может быть наиболее плодотворным при низких абсолютных температурах, когда возбуждения слабы, т. е. квазичастиц мало.)

2. Лэмбовский сдвиг

Знаменитое уравнение Дирака (1928) описывало все известные свойства электрона: его волновые свойства, электрический заряд, спин, магнитный момент и релятивистскую зависимость массы от скорости. В качестве основы значительной части квантовой механики уравнение Дирака позволило с большой точностью предсказать энергетические уровни атома водорода (уровни других атомов рассчитываются с гораздо меньшей точностью).

В атоме водорода единственный электрон движется вокруг ядра по одной из серии орбит, на каждой из которых он обладает точно определяемой энергией (вообще говоря, у каждого уровня, кроме основного, существует ширина, т. е. некоторый разброс энергий, но он тоже должен быть строго определенным). Для перехода электрона на более высокую орбиту атом должен поглотить фотон, энергия которого в точности соответствует разности энергий между орбитами. А при переходе электрона на более низкую орбиту атом испускает фотон соответствующей энергии. Такие переходы порождают спектр атомарного водорода, состоящий из отдельных четких линий.

Обычно возбужденное (или высокоэнергетическое) состояние атома быстро распадается, время распада обратно пропорционально ширине уровня — атом переходит, испуская излучение, в состояние с более низкой энергией. Наиболее сильно возбужденные состояния распадаются с испусканием одного фотона примерно за одну стотысячную секунды. Но существуют и метастабильные, т. е. «почти стабильные» состояния с гораздо большим временем жизни: так, второе возбужденное состояние атома водорода «живет» примерно в 700 млн раз дольше, поскольку его распад требует испускания двух фотонов. При этом из уравнения Дирака выводилась эквивалентность двух особых уровней, один из которых метастабилен: эти уровни соответствуют различным состояниям, имеют весьма различные времена жизни, но тем не менее должны обладать точно одинаковой энергией.

Уиллис Ю. Лэмб (1913–2008) — физик-теоретик, много работал по микроволновым излучениям. Как он рассказывал, задуманный эксперимент никто не хотел выполнять, и чтобы отвязаться, ему выделили аппаратуру и практиканта для работы. Человек очень сдержанный, близорукий и неловкий, Лэмб ограничивался лишь указаниями, изредка ему «разрешалось» списывать результаты с осциллографа. Известие о присуждении премии ничуть не повлияло на его поведение: он как всегда спокойно провел со студентами плановые занятия и только потом вышел к давно ожидавшим репортерам.

Но еще в 1934–1939 гг. появились замечания о том, что между ними есть какая-то разница. Эксперименты были, однако, не очень надежными — разница энергий столь мала, что ее не удавалось точно промерить, а война прервала дальнейшую работу.

Прояснение этого вопроса сыграло ключевую роль в развитии квантовой электродинамики (КЭД), основы всех теорий квантовых полей, и связано оно в основном с экспериментом, задуманным Лэмбом и проведенным им совместно со студентом Робертом К. Ризерфордом в 1947 г.

В эксперименте Лэмба приготовленный пучок атомов, находящихся именно в этом долгоживущем метастабильном состоянии, переводился при облучении в микроволновом (сверхвысокочастотном, СВЧ) диапазоне в короткоживущее состояние — работы Лэмба в военное время по радиолокационной технике позволили сконструировать нужное для этого эксперимента специальное оборудование. Используемая аппаратура позволяла с большой точностью менять частоту облучения в диапазоне около 1000 МГц, а количество распадающихся атомов (уже перешедших на другой уровень) показывало вероятность процессов.


Еще от автора Марк Ефимович Перельман
«Развлекательная литература» и научный сотрудник

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.