Наблюдения и озарения, или Как физики выявляют законы природы - [10]
Как странную теорию Бора восприняли в мире? Наиболее авторитетный англичанин, лорд Рэлей, заявил, что пожилые люди не должны вмешиваться и мешать молодым в их фантазиях — все равно перестраиваться уже невозможно. Ну а молодые? Отто Штерн (1888–1969, Нобелевская премия 1943 г.) вспоминал в старости, что он и Макс фон Лауэ, тоже будущий нобелевский лауреат, ранее первым приехавший к Эйнштейну и поддержавший теорию относительности, поклялись друг другу в 1914 г., что они откажутся от занятий физикой, «если в этой боровской бессмыслице что-то есть»; оба, к счастью, обещания не сдержали…
Нильс Бор обладал необычайной способностью генерировать новые научные идеи и обсуждать идеи своих учеников. Поэтому Копенгаген стал «столицей атомной физики» и Меккой для исследователей атома из всех стран. При этом, как писал его ученик К. Ф. фон Вайцзеккер, «выдающиеся математические способности или даже виртуозность в той мере, в какой ими обладают многие из его учеников, ему не даны. Он мыслит наглядно и с помощью понятий, но не собственно математически». Ученики Бора шутили, что он знает будто бы только два математических знака: «меньше, чем…» и «приблизительно равно». (Сюда же относится его знаменитый афоризм: «Что не экспонента, то логарифм», — сложные формулы он не любил.)
Пауль (Павел Сигизмундович) Эренфест (1880–1933) выполнил с женой Татьяной Афанасьевой логический анализ статистической механики, ввел классификацию фазовых переходов, доказал правила перехода от квантовой теории к классической. В 1907–1911 гг. работал в Петербурге, затем стал преемником Лорентца в университете Лейдена, друг Эйнштейна и А. Ф. Иоффе. Трагически ушел из жизни: застрелил психически безнадежно больного сына и тут же покончил с собой.
Красота издавна превратила кристаллы (от греческого «кристаллос» — первоначально, лед) в предметы собирания и повысила их ценность. Физики не могли оставаться равнодушными к их свойствам и, естественно, пытались понять их структуру, классифицировать кристаллы по каким-то свойствам и по форме (вначале, еще в XVIII в., с целью найти наилучшие способы огранки). Поэтому кристаллография обычно делится на геометрическую, физическую и химическую.
Геометрическая кристаллография установила, используя математический аппарат теории групп, что все кристаллы можно подразделить на определенное число классов и групп по их свойствам симметрии. Таким образом, если задать положение любого атома и его ближайших соседей, то можно восстановить всю кристаллическую решетку.
Схема эта, однако, оставалась чисто умозрительной — никто ведь расположения атомов не видел и не надеялся увидеть. История того, как их удалось увидеть, естественно разделяется на несколько частей.
Началась она с того, что в 1912 г. Арнольд Зоммерфельд (1868–1951, один из крупнейших физиков-теоретиков первой половины XX в.) поручил своему ассистенту Максу фон Лауэ (1879–1960) написать для «Физической энциклопедии» статью по волновой оптике, и Лауэ решил детальнее ознакомиться с дифракцией световых волн.
В это время его друг Пауль Эвальд (1888–1985), тоже ученик Зоммерфельда, изучал оптические свойства кристаллов и решил обсудить их с Лауэ, который ничего о кристаллах не знал. В разговоре он упомянул, что расстояние между атомами в кристаллической решетке должно быть порядка одной тысячной длины волны света. И тут Лауэ осенила неожиданная идея: он был сторонником волновой теории рентгеновских лучей (проблема их природы живо обсуждалась в то время), а так как получалось, что межатомные расстояния в кристаллических решетках примерно в 10 раз больше, чем предполагаемые длины волн рентгеновского излучения, то он предположил, что при прохождении лучей через кристалл должна отчетливо «высвечиваться» дифракционная картина. Получаться она должна потому, что из кристалла по различным направлениям должно исходить рассеянное на отдельных атомах рентгеновское излучение и порождать светлые точки, куда приходят лучи, совпадающие по фазе и поэтому усиливающие друг друга, и темные области, где сходятся лучи, в той или иной мере не совпадающие по фазе и поэтому гасящие друг друга.
Проверить это предположение Лауэ уговорил Вальтера Фридриха (1883–1968) и Пауля Книппинга (1883–1935). Для эксперимента был взят кристалл медного купороса: пластинки расположили со всех сторон вокруг кристалла, и один из снимков сразу же показал именно такую картину. (Опыт этот ставился тайно, так как Зоммерфельд запретил им тратить время на всякие глупости: он считал, что тепловые колебания атомов в решетке снижают их регулярность.)
В ходе исследований и при их обсуждениях с участием Эвальда выяснилось, что рентгеновские лучи, направленные на кристаллическую структуру, частично отклоняются под воздействием атомных электронов. Каждый из вторичных отклоненных пучков отходит под определенным углом и имеет определенную интенсивность. На выходе все они в комплексе образуют рисунок, характер которого зависит от позиции атомов в кристалле. Смысл изучения именно кристаллов — структур, состоящих из одинаковых элементов (элементарных ячеек) — очевиден. Множество упорядоченных в трех измерениях отдельных атомов дает множество одинаково направленных отклоненных пучков, что в итоге значительно увеличивает четкость дифракционной картины по сравнению с плоской решеткой.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.