На волне Вселенной. Шрёдингер. Квантовые парадоксы - [7]

Шрифт
Интервал

Существует взаимосвязь между упорядоченностью структуры и вероятностью этой упорядоченности. Если предусмотреть место абсолютно для каждой игрушки, то в конечном итоге сохранить конфигурацию, заданную родителями, практически невозможно. Практика показывает, что, в соответствии со вторым принципом термодинамики, детская комната стремится к хаосу.

Природные системы развиваются спонтанно: их элементы распределяются в соответствии с конфигурациями наиболее вероятными или характеризующимися наиболее высокой энтропией, то есть наиболее неупорядоченными. Отдавшись случайному наиболее общему стремлению, материя распределяет атомы в соответствии со все более и более неорганизованными конфигурациями.

Согласно Больцману, второму закону термодинамики следует давать статистическую интерпретацию. Ничто не мешает системе развиваться в направлении менее вероятных и более организованных конфигураций, но только в качестве этапа ее эволюции. Подталкиваемые случайными взаимными движениями, молекулы воздуха в комнате могут сосредоточиться в одном из углов, хотя это почти невозможно. Такая вероятность существует, но она настолько мала, что до ее реализации пройдет целая вечность.

Идеальные газы, для которых удалось успешно применить статистическую механику, представляют собой особый вид материи. Прежде чем сконцентрироваться на взаимодействии света и материи, физики выстроили новые стратегии расширения контроля над новой термодинамикой. Однако вначале необходимо кратко рассмотреть, что же ученые того времени понимали под светом.


Видимое и невидимое

Квантовая механика — это теория, берущая свое начало из взаимосвязей между светом и материей. В годы ее появления ученые обрели новую точку зрения по отношению к свету. Установив связь между феноменами электричества и магнетизма, Максвелл обнаружил, что малейшие изменения в силе тока или в расположении зарядов распространяются в пространстве в форме волны, скорость которой соответствует скорости света в вакууме. В результате ученый пришел к выводу, что электромагнитное излучение и свет являются одним и тем же явлением. На этом основании и мы будем употреблять оба термина в одном значении. Именно таким неожиданным образом была впервые установлена связь между материей — местом расположения заряда — и излучением.

Хотя мы ассоциируем свет со зрением, с точки зрения физики глаза практически слепы к электромагнитному излучению. В крайне узком диапазоне, который только и подвластен нашим ощущениям, изменение λ сводится к изменению цвета. Когда волна выходит за рамки 700 нм, она переходит в инфракрасный диапазон и исчезает из нашего спектра. Когда длина волны падает ниже 400 нм, она также исчезает из нашего спектра, поскольку сетчатка глаза не воспринимает ультрафиолетовый диапазон (см. рисунок 1 на следующей странице).

Первооткрывателем в этой области был немецкий астроном Уильям Гершель, который в 1800 году поставил простой опыт, доступный каждому. Используя те же методы, что и Ньютон, он разложил луч света с помощью призмы на компоненты. Затем он поместил термометр в каждый диапазон проявившихся цветов. Дойдя до красного, он продолжил сдвигать термометр и замерил температуру инфракрасного спектра. Таким образом было установлено, что даже невидимое для нас излучение обладает энергией. То же самое справедливо и для радиоволн, которые возбуждаются электронами в антенне, или гамма-лучей, источниками которых являются атомные ядра. Излучение по-разному взаимодействует с телами. Чтобы заметить это, достаточно поместить в микроволновую печь стакан воды и кусок алюминия. Вода поглощает микроволны, тогда как алюминий их отражает. Атмосфера непрозрачна для ультрафиолета, однако проницаема для радиоволн.

РИС. 1

Какие законы регулируют взаимодействие между светом и материей? Как тела испускают излучение? Как они поглощают его? Максвелл определил в своих уравнениях свет как волну, и с тех пор ученые имели о нем достаточно четкое представление, но предмет изучения оказался намного сложнее. Термодинамика и электродинамика были двумя драгоценными камнями в короне физики XIX века. Вооружившись ими, исследователи чувствовали себя уверенно, пока не начали брать на абордаж более тонкие и сложные нюансы взаимодействия атомов и молекул. И в этом случае потребность в новом подходе нашла ответ в статистике с ее способностью выявлять скрытые аспекты проблем.


Спектры излучения

Горячие тела испускают электромагнитное излучение, даже если мы его не видим. К примеру, водонагреватель излучает волны, частоты которых соответствуют видимому свету, но их интенсивность так слаба, что наши глаза не могут воспринимать их даже в темноте. Как правило, твердое тело излучает свет в широком диапазоне длин волн независимо от температуры, однако большая часть энергии концентрируется вокруг определенного значения. По мере увеличения температуры тела значение λ уменьшается. Для большей наглядности рассмотрим распределение веса в большой группе лиц. Данные будут распределены в пространстве значений веса, но большая их часть сконцентрируется вокруг среднего значения. Этот эффект сохранится, если даже мы изменим параметры наблюдаемых, просто среди хорошо питающегося населения средний вес будет больше, чем среди бедных жителей, однако в каждой популяции мы заметим крайние степени тучности и худобы. Можно провести аналогию между степенью упитанности населения и температурой тела. Основная часть энергии сосредоточена вокруг определенной длины волны (средний вес), которая варьируется в зависимости от температуры (качество и количество питания). Наши глаза воспринимают волны, длина которых лежит в пределах от 400 до 700 нм. В кузнице сталь краснеет при температуре около 500 °С, а при приближении к 600 °С цвет набирает интенсивность. При температуре от 700 до 800 °С сталь приобретает вишневый цвет, при нагревании свыше 840 °С она становится розовато-желтой, при более чем 900 °С — оранжевой и после 1000 °С — лимонно-желтой. Металл, нагретый выше 1200 °С, избавляется от желтых оттенков, становится белым и подходит к точке плавления.


Еще от автора Давид Бланко Ласерна
Эйнштейн. Теория относительности. Пространство – это вопрос времени

Альберт Эйнштейн – один из самых известных людей прошлого века. Отгремело эхо той бурной эпохи, в которую ученому выпало жить и творить, эхо мировых войн и ядерных атак, но его гениальные открытия и сегодня не потеряли остроты: закон взаимосвязи массы и энергии, выраженный знаменитой формулой Е = mc² , поистине пионерская квантовая теория и особенно теория относительности, навсегда изменившая наши, до того столь прочные, представления о времени и пространстве.


Гюйгенс Волновая теория света. В погоне за лучом

Христиан Гюйгенс стоял у истоков современной науки. Этот нидерландский физик и математик получил превосходное образование, которое позволило ему войти в высшие интеллектуальные круги XVII века в период, когда появлялись государственные научные организации и обмен идеями становился все интенсивнее. Гюйгенс был первопроходцем в математическом изучении вероятностей, а его опыт в области механики позволил ему сконструировать маятниковые часы. Но главные достижения ученого относятся к области оптики и исследования природы света, в ходе которого был сформулирован принцип Гюйгенса, позже ставший основой волновой теории света.


Рекомендуем почитать
Эмбрионы в глубинах времени

Эта книга предназначена для людей, обладающих общим знанием биологии и интересом к ископаемым остаткам и эволюции. Примечания и ссылки в конце книги могут помочь разъяснить и уточнить разнообразные вопросы, к которым я здесь обращаюсь. Я прошу, чтобы мне простили несколько случайный характер упоминаемых ссылок, поскольку некоторые из затронутых здесь тем очень обширны, и им сопутствует долгая история исследований и плодотворных размышлений.


Инсектопедия

Книга «Инсектопедия» американского антрополога Хью Раффлза (род. 1958) – потрясающее исследование отношений, связывающих человека с прекрасными древними и непостижимо разными окружающими его насекомыми.Период существования человека соотносим с пребыванием насекомых рядом с ним. Крошечные создания окружают нас в повседневной жизни: едят нашу еду, живут в наших домах и спят с нами в постели. И как много мы о них знаем? Практически ничего.Книга о насекомых, составленная из расположенных в алфавитном порядке статей-эссе по типу энциклопедии (отсюда название «Инсектопедия»), предлагает читателю завораживающее исследование истории, науки, антропологии, экономики, философии и популярной культуры.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.


Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы

Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.


Тайна за тремя стенами. Пифагор. Теорема Пифагора

Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.


Наука высокого напряжения. Фарадей. Электромагнитная индукция

Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.