На волне Вселенной. Шрёдингер. Квантовые парадоксы - [2]

Шрифт
Интервал

Широта интересов Шрёдингера действительно поражает. Он изучал диэлектрические материалы, магнетизм, элементарные частицы, термодинамику, спектроскопию, квантовую механику, общую теорию относительности, удельную теплоемкость, единые геометризованные теории поля, радиоактивность, космические лучи, поверхностное натяжение, акустику, сверхпроводимость и проблемы учения о цвете. Ученый реализовал множество экспериментов и, кажется, полжизни провел в лаборатории.

Ранние работы Шрёдингера во многом были определены интересами его венских наставников. Пока ученый не предложил свой собственный взгляд, он занимался в основном исправлением ошибок старших коллег. Многие свои статьи исследователь начинал с обзора предшествующих подходов, подробно подчеркивая каждую неточность, а затем предлагал свое объяснение. Шрёдингер напоминал талантливого ученика, который, впрочем, еще не нашел своего места и не понял, в чем его собственная сила. Первое расхождение с традицией наметилось в его статьях об общей теории относительности, с которой ученый познакомился на военной службе в годы Первой мировой войны. На фронте он написал статью, касающуюся одного из самых сложных аспектов теории — неоднозначности в определении гравитационной энергии (восхищение Эйнштейном Шрёдингер сохранил на всю жизнь).

В 39 лет, сам того не ожидая (да и никто этого не ожидал), он создал свое самое значительное творение — волновую механику. Произошло это после периода затишья, к тому же в возрасте, когда творческие способности многих ученых уже угасают. Уравнение Шрёдингера возникло в тот момент, когда физики-теоретики стояли перед целым клубком экспериментальных результатов, никак не могли его распутать и испытывали по этому поводу огромную растерянность. Австриец Вольфганг Паули в 1925 году сетовал: «Сейчас физика слишком непонятна. Во всяком случае, она слишком трудна для меня, и я предпочел больше никогда не слышать о ней». Однако Шрёдингер не пал жертвой этой растерянности, а поместил привычное уравнение классической физики в самый центр негостеприимной квантовой механики.

Его волновая механика родилась как реакция на требование Вернера Карла Гейзенберга уничтожить любое интуитивное видение в области атомов. Шрёдингер стремился сохранить классический дух, создавая новую фантазию, основанную на волнах вместо частиц: «Целью исследований атомов является внедрение экспериментов, проистекающих из нашего повседневного образа мыслей». В своих поисках он потерпел поражение, и его реакция на то, что вся работа в области квантовых сущностей не дала никаких результатов, вошла в историю: «Я простить себе не могу, что вообще связался с квантовой теорией!» Однако Нильс Бор совсем не считал проделанную работу напрасной: «Мы все чрезвычайно благодарны вам, — говорил он коллеге. — Ваша волновая механика принесла с собой такую математическую ясность и простоту, что явилась гигантским шагом вперед». Шрёдингер не только посвятил огромное количество времени безнадежному, как он посчитал, делу — параллельно он сформулировал то, что станет ключом к современной физике, — волновое уравнение, маяк в сердце тьмы, каким ранее стало выражение F= m x а Ньютона.

Рождение квантовой механики вызвало напряженность в научном мире, поскольку открытие противоречило привычным подходам. Однако благодаря коллективной работе ряда известных ученых, трудившихся в двух научно-исследовательских центрах — Копенгагене и Гёттингене,— квантовая механика получила признание. В число ее адептов вошли Нильс Бор, Вернер Карл Гейзенберг, Макс Борн, Вольфганг Паули и Паскуаль Йордан. К ним также можно добавить Поля Дирака из Кембриджа. В отличие от этой плеяды, Шрёдингер, как и Эйнштейн, работал в одиночестве:


«В научной деятельности, как и вообще в жизни, я никогда не придерживался какой-либо генеральной линии, не следовал руководящей программе, рассчитанной на длительные сроки. Хотя я очень плохо умею работать в коллективе, в том числе, к сожалению, с учениками, мои труды никогда не были совершенно самостоятельными, поскольку мой интерес к какому-либо вопросу всегда зависит от интереса, проявляемого к этому же вопросу другими»[>1 Перевод А. С. Доброславского.].


Хотя Шрёдингер не основал ни одной школы и не собрал вокруг себя последователей, он написал одно из самых вдохновляющих научных произведений XX века — сборник «Что такое жизнь?», куда вошел цикл его лекций, прочитанных в Тринити-колледже в Дублине в 1943 году. Эта книга убедила целое поколение ученых в том, что физика содержит уникальные возможности для изучения живых существ. Шрёдингер предвидел структурные особенности, выражающиеся в том, что наследственность связана с хромосомами, и вывел современную концепцию генетического кода.

Одна из наиболее выдающихся частей наследия Шрёдингера имеет отношение к его языку, к его способности находить для описания экспериментальных ситуаций яркие образы, которые сразу же подхватывают даже его научные оппоненты. Например, все знают о коте, который носит имя ученого и стал символом загадок квантовой механики. Судьба животного, запертого в стальной камере, зависит от ядерного распада. Когда ядро расщепляется, высвобождается токсичный газ, убивающий кота. Зафиксировать этот момент, по законам физики, нельзя, возможно лишь дать вероятностное описание эксперимента. Пока камера не открыта, распад одновременно происходит и не происходит. Кот, подвешенный в этом невероятном состоянии между жизнью и смертью, является вызовом, испытанием, которое должна пройти каждая интерпретация теории. Шрёдингер также способствовал расширению научного лексикона, введя термин «запутанность» для обозначения, вероятно, наиболее загадочного явления квантовой механики.


Еще от автора Давид Бланко Ласерна
Эйнштейн. Теория относительности. Пространство – это вопрос времени

Альберт Эйнштейн – один из самых известных людей прошлого века. Отгремело эхо той бурной эпохи, в которую ученому выпало жить и творить, эхо мировых войн и ядерных атак, но его гениальные открытия и сегодня не потеряли остроты: закон взаимосвязи массы и энергии, выраженный знаменитой формулой Е = mc² , поистине пионерская квантовая теория и особенно теория относительности, навсегда изменившая наши, до того столь прочные, представления о времени и пространстве.


Гюйгенс Волновая теория света. В погоне за лучом

Христиан Гюйгенс стоял у истоков современной науки. Этот нидерландский физик и математик получил превосходное образование, которое позволило ему войти в высшие интеллектуальные круги XVII века в период, когда появлялись государственные научные организации и обмен идеями становился все интенсивнее. Гюйгенс был первопроходцем в математическом изучении вероятностей, а его опыт в области механики позволил ему сконструировать маятниковые часы. Но главные достижения ученого относятся к области оптики и исследования природы света, в ходе которого был сформулирован принцип Гюйгенса, позже ставший основой волновой теории света.


Рекомендуем почитать
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы

Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.


Тайна за тремя стенами. Пифагор. Теорема Пифагора

Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.


Наука высокого напряжения. Фарадей. Электромагнитная индукция

Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.