На космическом корабле - [12]
Этот ученый, профессор Вебер, создал прибор, способный воспринимать эти волны, и в настоящее время работает над конструкцией аппарата для искусственного создания «гравитационных волн». Пока что его усилия не дали сколько-нибудь удовлетворительных результатов, и многие специалисты относятся к самой идее создания такого аппарата с большим сомнением.
Идея создания аппарата, излучающего волны тяготения, то есть гравитогена, положена в основу также и других проектов. Действительно, если удастся искусственно создавать тяготение, то почему бы не создать аппаратуру, уничтожающую силу тяготения, что может повести за собой полный переворот в жизни человечества?
Подумайте, что за блестящие открылись бы перспективы!
Ведь человек мог бы по своему желанию лишать себя веса, или, наоборот, искусственно его увеличивать. Самолеты, ракеты, космические корабли перестали бы расходовать огромную энергию на подъем с Земли и на полет в пространстве. Они стали бы гораздо экономичнее, удобнее и легче. По всей вероятности они стали бы похожи на пресловутые «летающие блюдца», способные подниматься и спускаться вертикально, притом с огромной скоростью в момент старта.
Возможность ликвидации силы тяготения — вопрос далекого будущего; пока что инженерам приходится серьезно заниматься значительно менее сложной проблемой, но также актуальной, решить которую необходимо уже сегодня, а именно проблемой выхода космонавта из космического корабля в космическое пространство.
ТРУДНОСТИ СНАРУЖИ КАБИНЫ
Представим себе, что космический корабль во время полета встретился на своем пути с роем метеоритов и что некоторые из них повредили наружную обшивку корабля. Устранить повреждение изнутри корабля не всегда возможно, и капитан корабля отдал приказание произвести наружный ремонт. Чтобы выполнить приказание, одному или нескольким космонавтам, одетым в специальные дополнительные скафандры, необходимо выйти наружу через особый шлюз. Понятие «выйти» следует принять с некоторой оговоркой, так как космонавт, сам находясь в состоянии невесомости, очутится в космической пустоте. Таким образом, как только он выйдет из кабины корабля, любое, даже самое малое движение, может повлечь за собой неожиданные последствия, а попытка космонавта приблизиться к кораблю и совершить какую-либо ремонтную операцию, окажется сложной и трудной проблемой. Конечно, космонавту нет надобности сохранять нормальное положение «головой вверх» — ведь в космосе нет понятия верха и низа, и нормальное положение там совсем иное, чем на Земле. Первая операция, которую должен будет проделать космонавт — это прикрепление фала к стенке корабля. Находясь на другом конце фала, космонавт может быть уверен, что сможет вернуться на корабль и не останется навсегда в космосе, что могло бы случиться, если бы ему не удалось вернуться на борт корабля.
Но как двигаться вне корабля?
За спиной и у пояса космонавта прикреплены батареи небольших ракет; нажимая кнопки на щитке, находящемся на груди, космонавт может запускать различные ракеты и, пользуясь их отдачей, передвигаться в нужном направлении.
При обследовании корабля космонавт обнаружил два отверстия, пробитые в обшивке метеоритами, и приступает к ремонту. Сначала ему необходимо просверлить несколько небольших отверстий в обшивке, сделать внутри этих отверстий винтовую нарезку, приложить к стене заплату и закрепить ее болтами. Перед тем, как начать работу, космонавту необходимо приставить к обшивке корабля ручку с магнитной присоской, чтобы держаться за нее во время работы, после чего надо вытянуть из-за пояса электродрель, напоминающую по внешнему виду пистолет. Постановка заплаты на обшивке корабля, в этих условиях, осуществляется легко и просто, все действия и операции проводятся быстро и уверенно.
Однако тот, кто думает, что космонавт может работать обыкновенной дрелью, хорошо знакомой всем механикам на Земле, глубоко ошибется. Достаточно было бы пустить в ход такую дрель, чтобы увидеть совершенно неожиданные последствия. Дело в том, что космонавт стал бы вращаться вокруг дрели наподобие пропеллера. Ведь масса космического корабля значительно больше находящегося в вакууме тела космонавта.
К счастью, ныне космонавты располагают электродрелями специальной конструкции, и опасность такого забавного положения теперь уже сведена к минимуму.
Космические электродрели изготовлены и опробованы в условиях, близких к господствующим в космическом пространстве. Эти электродрели поступили на вооружение американского космического корабля, который должен полететь на Луну с экипажем в три человека.
ПРИ ТЕМПЕРАТУРЕ КИПЯЩЕЙ ВОДЫ
Человек не может выдержать слишком низкую или слишком высокую температуру. Лучше всего он себя чувствует при температуре около 20 по Цельсию. Если принять во внимание индивидуальные различия и учесть силу привычки, то можно сказать, что лучшая температура для жизнедеятельности человека находится в пределах 16–25 градусов. Достаточно, чтобы температура внешней среды отклонилась всего лишь на несколько градусов в ту, или другую сторону, и человек начинает чувствовать себя плохо, теряет физическую и умственную силу. Длительное пребывание в неблагоприятной температуре может повлечь за собой печальные последствия, вплоть до тяжелого заболевания.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.