Мыльные пузыри - [12]
Шар, или сфера, — не единственная форма, какую можно придать мыльному пузырю. Если поместить пузырь между двумя кольцами, его можно растягивать, пока он не примет вида круглой прямой трубки, так называемого цилиндра. Мы говорили о кривизне шара, или сферы; а какова будет кривизна цилиндра? Если смотреть сбоку на край деревянного цилиндра, поставленного на стол, то он будет представляться нам прямым, т. е. вовсе не имеющим кривизны; но если смотреть на цилиндр сверху, то конец его будет иметь вид круга; другими словами, он будет обладать определенной кривизной. Какова же в действительности кривизна поверхности цилиндра? Мы видели, что давление внутри пузыря зависит от его кривизны в том случае, когда пузырь имеет форму шара; но это верно для всяких пузырей, какой бы то ни было формы. Если нам удастся подобрать шар такого размера, чтобы воздух внутри него испытывал такое же давление, как и в цилиндрическом пузыре, тогда мы вправе будем сказать, что кривизна цилиндра равна кривизне уравновешивающего его шара.
Теперь на обоих концах короткой трубки я выдую по обыкновенному пузырю, притом нижнему пузырю придам при помощи другой трубки цилиндрическую форму, и буду вдуванием или выпусканием воздуха регулировать количество воздуха в нем, пока его стенки не станут совершенно прямыми. Вот теперь это удалось мне (рис. 23), и давление в обоих пузырях должно быть точно одинаковым, так как воздух может свободно переходить из одного в другой.
Рис. 23.
Мы видим, что поперечник шара ровно в два раза больше поперечника цилиндра. Но этот шар обладает лишь половиной кривизны, которой обладал бы шар с половинным диаметром. Отсюда мы видим, что кривизна цилиндра, равная, как мы знаем, кривизне большого шара (так как они. взаимно уравновешивают друг друга), составляет только половину кривизны шара равного диаметра, а потому давление внутри цилиндра равно только половине давления внутри шара с диаметром, равным диаметру цилиндра.
Теперь мне необходимо сделать еще шаг для разъяснения этого вопроса о кривизне. В тот момент, когда цилиндр и шар уравновешивают друг друга, я стану вдувать воздух так, чтобы шар увеличился. Что произойдет с цилиндром? Цилиндр наш, как видите, очень короткий; раздуется он тоже или случится что-нибудь другое? Вот я вдуваю воздух, и вы видите, что шар увеличился, причем давление внутри него уменьшилось; у цилиндра же появился перехват, это уже не цилиндр: его стенки вогнулись внутрь. По мере того как я вдуваю воздух и увеличиваю шар, они вгибаются все больше внутрь, но не беспредельно. Если бы я мог раздуть верхний пузырь до огромных размеров, давление внутри него стало бы ничтожно малым. Попробуем теперь совершенно и сразу уничтожить давление, просто заставив верхний пузырь лопнуть и давая таким образом свободный выход воздуху изнутри наружу. Повторим этот опыт в крупных размерах. Я беру два больших стеклянных кольца, между которыми образуется подобная же пленка, имеющая совершенно такую же форму с вогнутыми внутрь стенками (рис. 24).
Рис. 24.
Но так как внутри нет вовсе давления, то тут не должно быть и никакой кривизны, если то, что я сказал выше, правильно. Присмотримся, однако, к мыльной пленке. Кто же решится утверждать, что она не имеет кривизны? А между тем мы твердо установили, что давление и кривизна неизменно связаны друг с другом. По-видимому, мы пришли теперь к нелепому заключению. Так как давление сведено к нулю, то, как мы знаем, у поверхности не должно быть кривизны, а между тем достаточно беглого взгляда, чтобы заметить, что наша поверхность обладает кривизной, придающей ей вид элегантной фигуры с талией. Чтобы разобраться в этом, рассмотрим гипсовую модель геометрического тела, обладающего таким же перехватом.
Присмотримся к этому телу внимательнее. Я беру картонный кружок точно такого же диаметра, как и перехват нашей модели. Затем я прикладываю его ребром к перехвату (рис. 25), и вы видите, что, хотя кружок и не заполняет всей кривизны, он плотно соприкасается с частью, прилегающей к перехвату.
Рис. 25.
Далее мы обратим внимание на то, что эта часть модели при рассматривании сбоку кажется вогнутой внутрь, но она же показалась бы нам выгнутой наружу, если бы мы могли посмотреть на эту часть модели сверху. Итак, если рассматривать отдельно перехват, мы видим, что он одновременно и в одинаковой степени вогнут внутрь и выгнут наружу, в зависимости от точки зрения, с какой мы его рассматриваем. Кривизна, направленная внутрь, должна уменьшать давление внутри, кривизна же, направленная наружу, должна увеличивать его, а так как они равны, то как раз уравновешивают одна другую, и тут совсем не будет никакого давления. Если бы мы могли таким же путем исследовать пузырь с перехватом, мы убедились бы, что это справедливо не только по отношению к перехвату, но и по отношению к каждой части пузыря. Когда мы имеем дело с какой-нибудь изогнутой поверхностью, то для определения ее кривизны в какой-либо точке надо измерить кривизны вдоль двух взаимно перпендикулярных линий. Всякая кривая поверхность, подобная нашей, у которой в каждой точке эти две кривизны противоположно направлены и равны, называется поверхностью без кривизны. Таким образом, то, что казалось нелепостью, теперь разъяснилось. Наша поверхность, единственная, за исключением плоскости, поверхность без кривизны, симметричная по отношению к оси, называется катеноидом, потому что линии ее похожи, как вы непосредственно видите, на цепь, укрепленную в двух точках, a «catena» по-латыни и значит «цепь». Я привешиваю цепь к двум крючкам на горизонтальной палке и освещаю ее сильным светом так, что ее вам теперь хорошо видно (рис. 26).
Автор монографии — член-корреспондент АН СССР, заслуженный деятель науки РСФСР. В книге рассказывается о главных событиях и фактах японской истории второй половины XVI века, имевших значение переломных для этой страны. Автор прослеживает основные этапы жизни и деятельности правителя и выдающегося полководца средневековой Японии Тоётоми Хидэёси, анализирует сложный и противоречивый характер этой незаурядной личности, его взаимоотношения с окружающими, причины его побед и поражений. Книга повествует о феодальных войнах и народных движениях, рисует политические портреты крупнейших исторических личностей той эпохи, описывает нравы и обычаи японцев того времени.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В настоящей книге чешский историк Йосеф Мацек обращается к одной из наиболее героических страниц истории чешского народа — к периоду гуситского революционного движения., В течение пятнадцати лет чешский народ — крестьяне, городская беднота, массы ремесленников, к которым примкнула часть рыцарства, громил армии крестоносцев, собравшихся с различных концов Европы, чтобы подавить вспыхнувшее в Чехии революционное движение. Мужественная борьба чешского народа в XV веке всколыхнула всю Европу, вызвала отклики в различных концах ее, потребовала предельного напряжения сил европейской реакции, которой так и не удалось покорить чехов силой оружия. Этим периодом своей истории чешский народ гордится по праву.
Имя автора «Рассказы о старых книгах» давно знакомо книговедам и книголюбам страны. У многих библиофилов хранятся в альбомах и папках многочисленные вырезки статей из журналов и газет, в которых А. И. Анушкин рассказывал о редких изданиях, о неожиданных находках в течение своего многолетнего путешествия по просторам страны Библиофилии. А у немногих счастливцев стоит на книжной полке рядом с работами Шилова, Мартынова, Беркова, Смирнова-Сокольского, Уткова, Осетрова, Ласунского и небольшая книжечка Анушкина, выпущенная впервые шесть лет тому назад симферопольским издательством «Таврия».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В интересной книге М. Брикнера собраны краткие сведения об умирающем и воскресающем спасителе в восточных религиях (Вавилон, Финикия, М. Азия, Греция, Египет, Персия). Брикнер выясняет отношение восточных религий к христианству, проводит аналогии между древними религиями и христианством. Из данных взятых им из истории религий, Брикнер делает соответствующие выводы, что понятие умирающего и воскресающего мессии существовало в восточных религиях задолго до возникновения христианства.
Третья книга трилогии «Тарантул».Осенью 1943 года началось общее наступление Красной Армии на всем протяжении советско-германского фронта. Фашисты терпели поражение за поражением и чувствовали, что Ленинград окреп и готовится к решающему сражению. Информация о скором приезде в осажденный город опасного шпиона Тарантула потребовала от советской контрразведки разработки серьезной и рискованной операции, участниками которой стали ребята, знакомые читателям по первым двум повестям трилогии – «Зеленые цепочки» и «Тайная схватка».Для среднего школьного возраста.
Книгу составили известные исторические повести о преобразовательной деятельности царя Петра Первого и о жизни великого русского полководца А. В. Суворова.
Молодая сельская учительница Анна Васильевна, возмущенная постоянными опозданиями ученика, решила поговорить с его родителями. Вместе с мальчиком она пошла самой короткой дорогой, через лес, да задержалась около зимнего дуба…Для среднего школьного возраста.
Лирическая повесть о героизме советских девушек на фронте время Великой Отечественной воины. Художник Пинкисевич Петр Наумович.