Мозг фирмы - [24]
Такова таким образом природа фундаментального механизма, позволяющего нам как жителям этого мира или как руководителям предприятий справляться с огромным разнообразием, встречающимся в жизни. Мы можем распознать или выбрать, или принять решение на основе триллиона вариантов, используя только 40 хорошо продуманных рецепторов или классификаторов. Даже если мы неэффективно разрабатываем свою систему, планируем ее процедуры, результат весьма впечатляет. Мы также открыли меру, которую уместно использовать, размышляя о проблемах управления и при разработке инструментов управления. Тогда что же произойдет с законом о требуемом разнообразии? Ответ таков: мы можем создать генератор разнообразия в механизме управления, подобный тому, которым располагает природа для роста разнообразия как средства преодоления проблем управления.
Пока все хорошо, но теперь природа берет свой реванш. Если мы, управляющие, можем создавать очень большие множества из небольшого числа элементов, то то же может делать и природа. Посмотрите: мы заявляем, что нам необходимо 5 рецепторов для чтения 26 букв латинского алфавита. Представим себе тогда пять лампочек, которые могут зажигаться в любом порядке. (Первая горит, остальные выключены, две горят, три не горят и т. д.) Тот факт, что 5 рецепторов могут различать 26 букв, означает, что эти 5 лампочек могут создавать 32 комбинации, и, конечно, если мы хотим представить себе, что означает наше окружение, то должны понимать то, чем оно располагает. Тогда если ваш внешний мир располагает всего 40 лампочками, то из предыдущего мы знаем, что можем встретиться с триллионом разных состояний. Верно, что нам, чтобы разобраться в них, необходимо всего 40 информационных попыток — ситуация совершенно симметричная. Но мир состоит не из сорока лампочек, а из миллиардов вещей и событий.
Если вас фактически интересует n вещей и событий, каждое из которых в данный момент либо "вспыхнуло", либо нет, то такой мир предстает перед нами в одном из 2 >n возможных состояний n вещей. Поняв, сколь стремительно нарастает такая функция, начинаешь осознавать, что создается весьма незавидная перспектива. Но если мы хорошо умеем создавать управляющие механизмы, то такая перспектива нас не очень пугает, поскольку это означает, что необходимо такое число рецепторов, сколько насчитывается событий или вещей. Эти n рецепторов создадут 2 >n разнообразий на сенсориуме. Моторная система сведет 2>n состояний к возможным конкретным действиям. Мы, таким образом, сохранили требуемое разнообразие. Однако вспомним приведенный ранее аргумент: если вещей или событий больше, чем рецепторов, которые их распознают и сообщают о них системе управления, то мы не можем все их определить. И здесь мы вновь сталкиваемся с законом о требуемом разнообразии. В любой данный момент нас будет касаться лишь то, о чем мы знаем, и не больше, а его разнообразие равно n . Разнообразие n создает 2>n состояний, но наши процедуры выбора позволяют нам с этим справиться с помощью n процедур распознавания или n процедур выбора, т. е. именно с темих числом, которым мы располагали по определению. Но беда начинается, когда необходимо предпринимать какие-то действия.
Мы уже упоминали, что входные и выходные устройства симметричны и подчиняются закону о требуемом разнообразии. Это требование в равной мере распространяется как на входы, так и на выходы устройства. Реальная проблема управления, которую необходимо решать мозгу, сводится к проблеме сопоставления положения на входе с положением на выходе, с помощью анастомотик ретикулума. Если разнообразие возникающей перед нами ситуации равно n , то разнообразие на сенсориуме равно 2 >n . А если по закону о требуемом разнообразии необходимое число действий составляет n , то разнообразие на моторной плате будет также 2 >n . Каково же тогда разнообразие внутри сети, соединяющей сенсорную и моторную платы? Оно равно числу возможных комбинаций 2 >n из 2>n, т. е. (2>n)>2>n . Это утверждение проясняет рис. 9.
Рис.9
Если до этого мы рассуждали спокойно, то теперь пришло время поднять настоящую тревогу. Дело в том, что числа такого вида немыслимо велики. Следует понимать, как это получается. Уже объяснялось, почему n разнообразий создают 2>n состояний на сенсориуме. Объяснение достигалось по мере демонстрации того, как с целью поиска решения разнообразие разделялось пополам. Каждый доступный нам вариант выбора удваивает разнообразие. Начав с единственной возможности, мы позволяем создавать альтернативу: 0 или 1. При повторении этой процедуры 0 создает снова либо 0, либо 1, а единица — тоже 0 или 1 и т. д.
Рассмотрим черный ящик всего с двумя входными и двумя выходными величинами. На обеих его сторонах — сенсорной и моторной — при n=2 генерируется 2 >n = 2>2=4 состояния: 00, 01, 10, 11. Сколько же будет соединений? Ответ таков — моторное разнообразие (4) увеличивает мощность сенсорного разнообразия (4) в 4
Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.
100-летие спустя после окончания Первой мировой войны и начала становления Версальской системы предыстория и история этих событий требуют дальнейшего исследования. Тема книги актуальна и в связи с территориальными изменениями в Центрально-Восточной Европе (ЦВЕ) в конце ХХ века. Многие сегодняшние проблемы берут начало в геополитической трансформации региона в ходе Первой мировой войны и после ее окончания. Концептуальной новизной работы является попытка проследить возвращение имперской составляющей во внешнюю политику России.
Собирая эту книгу из огромного количества материалов, я ставила перед собой нетривиальную задачу: на жизненном примере взаимоотношений ученого каббалиста Михаэля Лайтмана и его великого учителя Баруха Ашлага показать один из возможных путей в каббалу. Удалось ли мне решить эту задачу, пусть решает читатель От составителя книги Ларисы АртемьевойКнига представлена в сокращенном виде. Это связано с тем,что значительная часть материалов данной книги в расширенном и дополненном виде уже скоро (осень 2006 года) будет представлена в новой книги Михаила Лайтмана, в его редакции и с его комментариями.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.