Молекулы - [58]

Шрифт
Интервал

Точнее, вероятность есть отношение числа способов осуществления данного события к числу способов осуществления всех возможных событий.

Напишите цифры от 0 до 9 на десяти картонных кружках, положите их в мешочек. Теперь вытаскивайте кружок, замечайте номер, а кружок кладите обратно. Это очень похоже на розыгрыш лотереи. Можно с уверенностью сказать, что одну и ту же цифру вы не вытянете подряд, скажем, 7 раз, даже если посвятите этому скучному занятию целый вечер. Почему? Вытаскивание семи одинаковых цифр - это одно событие, осуществляемое всего десятью способами (7 нулей, 7 единиц, 7 двоек и т. д.). А всего есть 107 возможностей вытащить семь кружков. Поэтому вероятность вытащить подряд семь кружков с одинаковыми цифрами равна >10/>10>7 =10>-6, т. е. всего одной миллионной.

Если насыпать в ящичек черные и белые зернышки и перемешать их лопаткой, то очень скоро зерна распределятся равномерно по всему ящичку. Зачерпнув наудачу горсть зерен, мы найдем в ней примерно одинаковое число белых и черных зернышек. Сколько бы мы ни перемешивали их, результат будет все время тем же - равномерность сохранится. Но почему не происходит разделения зерен? Почему долгим перемешиванием не удастся загнать черные зерна кверху, а белые книзу? И здесь все дело в вероятности. Такое состояние, при котором зерна распределены беспорядочно, т. е. черные и белые равномерно перемешаны, может быть осуществлено огромным множеством способов и, следовательно, обладает самой большой вероятностью. Напротив, такое состояние, при котором все белые зерна наверху, а черные внизу, единственно. Поэтому вероятность его осуществления ничтожно мала.

От зернышек в мешочке мы легко перейдем к молекулам, из которых построены тела. Поведение молекул подчиняется случаю. Это особенно ярко видно на примере газов. Как мы знаем, молекулы газа беспорядочно сталкиваются, движутся во всех возможных направлениях то с одной, то с другой скоростью. Это вечное тепловое движение непрерывно перетасовывает молекулы, перемешивает их так, как это делает лопатка с зернышками в ящике.

Комната, в которой мы находимся, заполнена воздухом. Почему в какой-либо момент не может случиться так, что молекулы из нижней половины комнаты перейдут в верхнюю половину - под потолок? Такой процесс не невозможен - он очень невероятен. Но что значит очень невероятен? Если бы такое явление было даже в миллиард раз менее вероятно, чем беспорядочное распределение молекул, то все-таки кто-нибудь смог бы его дождаться. Может быть, мы и дождемся такого явления?

Расчет показывает, что такое событие встречается для сосуда объемом 1 см>3 одно на10>3000000000000000000 раз.Вряд ли стоит делать различие между словами "крайне невероятное" и "невозможное". Ведь число, которое написано, невообразимо огромно; если его поделить на число атомов не только на земном шаре, но и во всей солнечной системе, то оно все равно останется огромным.

Какое же будет состояние молекул газа? Наиболее вероятное. А наиболее вероятным будет состояние, осуществимое наибольшим числом способов, т. е. беспорядочное распределение молекул, при котором имеется примерно одинаковое число молекул, движущихся вправо и влево, вверх и вниз, при котором в каждом объеме находится одинаковое число молекул, одинаковая доля быстрых и медленных молекул в верхней и нижней частях сосуда. Любое отклонение от такого беспорядка, т. е. от равномерного и беспорядочного перемешивания молекул по местам и по скоростям, связано с уменьшением вероятности, или, короче, представляет собой невероятное событие.

Напротив, явления, связанные с перемешиванием, с созданием беспорядка из порядка, увеличивают вероятность состояния. Эти явления и будут определять естественный ход событий. Закон о невозможности вечного двигателя второго рода, закон о стремлении всех тел к равновесному состоянию, получает свое объяснение. Почему механическое движение переходит в тепловое? Да потому, что механическое движение упорядочено, а тепловое беспорядочно. Переход от порядка к беспорядку повышает вероятность состояния.

Величину, характеризующую степень порядка и связанную простой формулой с числом способов создания состояния, физики назвали энтропией. Формулы приводить не будем, скажем лишь, что чем больше вероятность, тем больше и энтропия.

Закон природы, который мы сейчас обсуждаем, говорит: все естественные процессы происходят так, что вероятность состояния возрастает. Другими словами тот же закон природы формулируется как закон возрастания энтропии.

Закон возрастания энтропии - важнейший закон природы. Из него вытекает, в частности, и невозможность построения вечного двигателя второго рода, или, что то же самое, утверждение, что предоставленные сами себе тела стремятся к равновесию. Закон возрастания энтропии является тем же вторым началом термодинамики. Различие формальное, а содержание то же. А самое главное: мы дали второму началу термодинамики трактовку на языке молекул.

В некотором смысле объединение этих двух законов под одну шапку не вполне удачно. Закон сохранения энергии - закон абсолютный. Что же касается закона возрастания энтропии, то, как следует из сказанного выше, он применим лишь к достаточно большому собранию частиц, а для отдельных молекул его просто невозможно сформулировать.


Еще от автора Александр Исаакович Китайгородский
Что такое теория относительности

Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.


Электроны

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.


Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.


Как измеряются расстояния между атомами в кристаллах

О рентгеноструктурном анализе атомной структуры кристаллов.


Проблема № 2

Статья о явлении сверхпроводимости из журнала «Техника – молодежи» № 11, 1975.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Физические  тела

Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.


Фотоны и ядра

В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.