Молекулы - [55]

Шрифт
Интервал

Каким образом можно повысить к. п. д. бензинового двигателя? Главный путь - повышение степени сжатия.

Если смесь сжать перед воспламенением сильнее,; то ее температура будет выше. А почему важно повысить температуру? Дело в том, что можно строго доказать (доказательство громоздкое и неинтересное, а потому мы его опустим; читатель неоднократно призывается нами кое-когда верить авторам на слово), что максимальное значение к. п. д. равно 1->T>0/>T, где Т - температура рабочего тела, а Т>0 - температура окружающей среды. Со средой мы ничего поделать не можем, а вот температуру рабочего тела стремимся во всех случаях увеличить возможно больше. Но (да, к сожалению, есть "но") сильно сжатая смесь детонирует (см. стр. 171). Рабочий ход приобретает характер сильного взрыва, который может повредить двигатель.

Приходится принимать специальные меры, уменьшающие детонационные свойства бензина, а это сильно удорожает и без того не дешевое топливо.

Проблемы повышения температуры при рабочем ходе, устранения детонации и удешевления топлива удачно решены в дизельном двигателе.

Дизельный двигатель по конструкции очень напоминает бензиновый, но рассчитан на более дешевые и низкокачественные продукты перегонки нефти, чем бензин.

Цикл начинается с всасывания в цилиндр чистого воздуха. Затем воздух сжимается поршнем примерно до 20 атм.

Добиться такого сильного сжатия, прокручивая двигатель рукой, было бы очень трудно. Поэтому дизель запускают специальным пусковым мотором, обычно бензиновым, или сжатым воздухом.

При сильном сжатии температура воздуха в цилиндре поднимается настолько, что становится достаточной для воспламенения горючей смеси. Но как впустить ее в цилиндр, где достигнуто высокое давление? Впускной клапан здесь не годится. Его заменяют форсункой, через крошечное отверстие нагнетающей топливо в цилиндр. Оно воспламеняется по мере поступления, чем устраняется опасность детонации, существенная для бензинового двигателя.

Устранение опасности детонации позволяет строить тихоходные судовые дизели на много тысяч лошадиных сил. Они, естественно, приобретают весьма значительные размеры, но остаются компактнее агрегата из парового котла и турбины.

Суда, снабженные дизельными двигателями, без особой логики называются в нашей литературе теплоходами.

Корабль, на котором между дизелем и винтом стоят генератор и мотор постоянного тока, называют "дизель-электроход".

Дизельные локомотивы - тепловозы, широко внедряемые сейчас на железных дорогах,- построены по той же схеме,; поэтому их можно называть "дизельэлектровозами".

Поршневые двигатели внутреннего сгорания, рассмотренные нами в последнюю очередь, заимствовали основные конструктивные элементы - цилиндр, поршень, получение вращательного движения при помощи шатунно-кривошипного механизма - у постепенно сходящей сейчас со сцены паровой машины. Паровую машину можно было бы назвать "поршневым двигателем внешнего сгорания". Именно это сочетание громоздкого парового котла с не менее громоздкой системой преобразования поступательного движения во вращательное движение лишает паровую машину возможности успешно конкурировать с более современными двигателями.

Современные паровые машины имеют к. п. д. около 10%. Снятые сейчас с производства паровозы выпускали в трубу без всякой пользы до 95% сжигаемого ими топлива.

Этот "рекордно" низкий к. п. д. объясняется неизбежным ухудшением свойств парового котла, предназначенного для установки на паровозе, по сравнению со стационарным паровым котлом.

Почему же паровые машины в течение столь долгого времени имели такое широкое применение на транспорте?

Кроме приверженности к привычным решениям, играло роль и то обстоятельство, что паровая машина имеет очень хорошую тяговую характеристику: ведь чем с большей силой сопротивляется нагрузка перемещению поршня, тем с большей силой давит на него пар, т, е. вращающий момент, развиваемый паровой машиной, возрастает в трудных условиях, что и важно на транспорте. Но, разумеется, отсутствие для паровой машины необходимости в сложной системе переменных передач к ведущим осям ни в коей мере не искупает ее коренного порока - низкого к. п. д.

Этим и объясняется вытеснение паровой машины другими двигателями.

Законы термодинамики

Сохрнение энергии на языке молекул

Законы термодинамики относятся к числу великих законов природы. Таких законов немного. Их можно пересчитать по пальцам одной руки.

Основная цель науки, и в том числе, конечно, физики, состоит в поисках правил, закономерностей, общих законов, великих законов, которым подчиняется природа. Этот поиск начинается с наблюдения или эксперимента. Поэтому мы говорим, что все наши знания носят эмпирический (опытный) характер. За наблюдениями следует поиск обобщений. Путем настойчивого труда, размышлений, вычислений и озарения находятся законы природы. После этого следует третий этап: строгий логический вывод из этих общих законов следствий и частных законов, которые могут быть проверены на опыте. В этом, кстати говоря, и состоит объяснение явления. Объяснить - это значит подвести частное под общее.


Еще от автора Александр Исаакович Китайгородский
Что такое теория относительности

Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.


Электроны

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.


Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.


Как измеряются расстояния между атомами в кристаллах

О рентгеноструктурном анализе атомной структуры кристаллов.


Проблема № 2

Статья о явлении сверхпроводимости из журнала «Техника – молодежи» № 11, 1975.


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Физические  тела

Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.


Фотоны и ядра

В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.