Молекулы - [53]
Существуют вещества, еще менее чувствительные к внешним воздействиям. Удобрительная смесь аммиачной Селитры и сернокислого аммония не считалась взрывчатой до трагического случая, происшедшего в 1921 г. на немецком химическом заводе в Оппау. Для дробления слежавшейся смеси там был применен взрывной способ. В результате на воздух взлетели склад и весь завод. В несчастье нельзя было упрекать инженеров завода: примерно двадцать тысяч подрывов прошло нормально и лишь один раз создались условия, благоприятные для детонации.
Вещества, которые взрываются лишь под действием ударной волны, а при обычных условиях устойчиво существуют и даже не боятся огня, весьма удобны для техники взрывного дела. Такие вещества можно производить и хранить в больших количествах. Однако для приведения этих инертных взрывчатых веществ в действие нужны зачинатели или, как говорят, инициаторы взрыва. Такие инициирующие взрывные вещества совершенно необходимы как источники ударных волн.
Примером инициирующих веществ могут служить азид свинца или гремучая ртуть. Если крупинку такого вещества положить на лист жести и поджечь, то происходит взрыв t пробивающий в жести отверстие. Взрыв таких веществ в любых условиях детонационный.
Если немного азида свинца поместить на заряд вторичного взрывчатого вещества и поджечь, то взрыв инициатора дает ударную волну, достаточную для детонации вторичного взрывчатого вещества. На практике взрыв производится при помощи капсюля-детонатора (1-2 г инициирующего вещества). Капсюль может быть подожжен на расстоянии, например при помощи длинного шнура (бикфордов шнур); исходящая от капсюля ударная волна взорвет вторичное взрывчатое вещество.
В ряде случаев технике надо бороться с детонационными явлениями. В двигателе автомобильного мотора в обычных условиях происходит "медленный взрыв" смеси бензина с воздухом. Однако иногда возникает и детонация. Ударные волны в моторе как систематическое явление совершенно недопустимы, так как под их действием стенки цилиндров мотора быстро выйдут из строя.
Для борьбы с детонацией в двигателях надо либо применять специальный бензин (так называемый бензин с высоким октановым числом), либо подмешивать в бензин специальные вещества - антидетонаторы не дающие развиваться ударной волне. Одним из распространенных антидетонаторов является тетраэтилсвинец (ТЭС). Это вещество очень ядовито, и инструкция предупреждает шоферов о необходимости осторожно обращаться с таким бензином.
Детонации нужно избегать при конструировании артиллерийского орудия. Ударные волны не должны образовываться внутри ствола при выстреле, в противном случае орудие выйдет из строя.
Двигатели, работающие за счет превращения молекул
Человек, живущий в XX веке, привык пользоваться разнообразными двигателями, выполняющими за него работу, удесятеряющими его силы.
В самом простейшем случае оказывается выгодным превратить механическую энергию в механическую же, но другого рода. Скажем, заставить ветер или поток воды вращать мельничное колесо.
На гидроэлектростанциях процесс превращения энергии водяного потока в круговое движение турбины является промежуточным. Турбина приводит в движение электрическую машину, которая дает ток. Но о таком преобразовании энергии речь впереди.
Уходят в прошлое паровые двигатели. Паровоз стал музейной редкостью. Слишком уж низкий у тепловой машины коэффициент полезного действия.
Это не значит, что вышли из употребления паровые турбины. Но и там превращение энергии расширяющегося пара в механическое движение колеса является лишь промежуточным этапом. Конечная цель - это получение электроэнергии.
Что же касается самолетов и автомобилей, то заставлять их двигаться с помощью парового котла или паровой турбины явно не имеет смысла: слишком велик будет суммарный вес двигателя и нагревателя в пересчете на одну лошадиную силу.
Но можно избавиться от постороннего нагревателя. В газовой турбине рабочим телом непосредственно являются раскаленные продукты сгорания высокотеплотворного топлива. В этих двигателях человек использует химические реакции, т. е. превращения молекул, для получения энергии. Этим определяются и важные преимущества газовой турбины перед паровой, и большие технические трудности, связанные с обеспечением ее надежной работы.
Преимущества очевидны: камера сгорания для сжигания топлива имеет малые размеры и может быть размещена под кожухом турбины, а продукты сгорания горючей смеси, состоящей, например, из распыленного керосина и кислорода, имеют температуру, недосягаемую для пара. Тепловой поток, образующийся в камере сгорания газовой турбины, очень интенсивен, что дает возможность получить высокий к. п. д.
Но эти преимущества оборачиваются и недостатками. Стальные лопатки турбины работают в струях газа, имеющих температуру до 1200°С и неизбежно насыщенных, микроскопическими зольными частицами. Легко себе представить, какие высокие требования приходится предъявлять к материалам, из которых изготовляют газовые турбины.
При попытке же сконструировать газовую турбину мощностью около 200 л. с. для легкового автомобиля пришлось столкнуться - с совсем уже своеобразной трудностью: турбина получалась столь малых размеров, что обычные инженерные решения и привычные материалы и вовсе, отказались служить. Однако технические трудности уже преодолеваются. Первые автомобили с газовыми турбинами созданы, но трудно сказать, будут ли они иметь будущее.
Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.