Молекулы - [14]
Нам надо обсудить ряд деталей, относящихся к пространственной решетке, но чтобы не затруднять художника построением сложных объемных рисунков, мы объясним то, что нам надо, на примере куска обоев.
На рис. 2.10 выделен тот наименьший кусок, простым перекладыванием которого можно составить все обои. Чтобы выделить такой кусок, проведем из любой точки рисунка, например из центра мячика, две линии, соединяющие выбранный мячик с двумя соседними. На этих линиях можно построить, как это видно на нашем рисунке, параллелограмм. Перекладывая этот кусочек в направлении основных исходных линий, можно составить весь рисунок обоев. Этот наименьший кусок может быть выбран по-разному: из рисунка видно, что можно выбрать несколько разных параллелограммов, каждый из которых содержит одну фигурку. Подчеркнем, что для нас в данном случае безразлично, будет ли эта фигурка целой внутри выделенного куска или разделенной на части линиями, ограничивающими этот кусок.
Рис. 2.10
Было бы неверным полагать, что, изготовив повторяющуюся на обоях фигурку, художник может считать свою задачу оконченной. Это было бы так лишь в том случае, если составление обоев можно было бы провести единственным способом - прикладыванием к данному кусочку, содержащему одну фигурку, другого такого же, параллельно сдвинутого.
Однако кроме этого простейшего способа есть еще шестнадцать способов заполнения обоев закономерно повторяющимся рисунком, т. е. всего существует 17 типов взаимных расположений фигурок на плоскости. Они показаны на рис. 2.11. В качестве повторяющегося рисунка здесь выбрана более простая, но, так же как и на рис. 2.10, лишенная собственной симметрии фигурка. Однако составленные из нее узоры симметричны, и их различие определяется различием симметрии расположения фигурок.
Рис. 2.11
Мы видим, что, например, в первых трех случаях . рисунок не обладает зеркальной плоскостью симметрии -- нельзя поставить вертикальное зеркало так,; чтобы одна часть рисунка была "отражением" другой части. Напротив, в случаях 4 и 5 имеются плоскости симметрии. В случаях 8 и 9 можно "установить" два взаимно перпендикулярных зеркала. В случае 10 имеются оси 4-го порядка, перпендикулярные к чертежу, в случае 11 - оси 3-го порядка. В случаях 13 и 15 имеются оси 6-го порядка и т. д.
Плоскости и оси симметрии наших рисунков выступают не поодиночке, а параллельными "семействами". Если мы нашли одну точку, - через которую можно провести ось (или плоскость) симметрии, то найдем быстро и соседнюю и далее на таком же расстоянии третью и четвертую и т. д. точки, через которые проходят такие же оси (или плоскости) симметрии.
17 типов симметрии плоского узора не исчерпывают, конечно, всего разнообразия узоров, составляемых из одной и той же фигурки; художник должен указать еще одно обстоятельство: как расположить фигурку по отношению к граничным линиям ячейки. На рис. 2.12 показаны два узора обоев с той же исходной фигуркой по различно расположенной по отношению к зеркалам. Оба эти узора относятся к случаю 8.
Рис. 2.12
Каждое тело, в том числе и кристалл, состоит из атомов. Простые вещества состоят из одинаковых атомов, сложные - из атомов двух или нескольких сортов. Предположим, что мы могли бы в сверхмощный микроскоп рассмотреть поверхность кристалла поваренной соли и увидеть центры атомов. Рис. 2.13 показывает, что атомы расположены вдоль грани кристалла, как узор обоев. Теперь вы уже можете легко понять, как построен кристалл. Кристалл представляет собой "пространственные обои". Пространственные, т. е. объемные, а не плоские элементарные ячейки - это "кирпичи", прикладыванием которых друг к другу в пространстве строится кристалл.
Рис. 2.13
Сколько же способов построения "пространственных обоев" из элементарных кусков? Эта сложная математическая задача была решена в конце прошлого века Евграфом Степановичем Федоровым. Он доказал,; что должны существовать 230 способов построения кристалла.
Все современные данные о внутреннем строении кристаллов получены при помощи рентгеноструктурного анализа, о котором мы расскажем в книге 4.
Существуют простые кристаллы, построенные из атомов одного сорта. Например, алмаз - это чистый углерод. Кристаллы поваренной соли состоят из ионов двух сортов: натрия и хлора. Более сложные кристаллы могут быть построены из молекул, которые в свою очередь состоят из атомов многих сортов.
Однако в кристалле всегда можно выделить наименьшую повторяющуюся группу атомов (в простейшем случае это будет один атом), иными словами, элементарную ячейку.
Размеры ячейки могут быть весьма различными. Наименьшие расстояния между соседними узлами (вершинами ячейки) встречаются у простейших кристаллов, построенных из атомов одного вида, наибольшие - у сложных кристаллов белка. Расстояния колеблются от 2-3 до нескольких сот ангстремов (стомиллионных долей сантиметра).
Кристаллические решетки очень разнообразны. Однако свойства, общие для всех кристаллов, безупречно объясняются решетчатым строением кристаллов. Прежде всего нетрудно понять, что идеально плоские грани - это плоскости, проходящие через узлы, в которых сидят атомы. Но узловых плоскостей можно провести сколько угодно по самым различным направлениям. Какие же из этих узловых плоскостей ограничивают выросший кристалл?
Современная физика без теории относительности почти так же невозможна, как без представления об атомах и молекулах. Эта теория принадлежит к числу «трудных» для понимания достаточно широкого круга читателей. Вот почему особенно ценно, что основные положения и идеи теории относительности читатель получает «из первых рук» — авторы этой книги академик, лауреат Ленинской и Нобелевской премий, ныне покойный Л. Д. Ландау и профессор Ю. Б. Румер.Три материала, включенные в послесловие, воссоздают образ Ландау — замечательного ученого и человека.
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.