Мир по Эйнштейну. От теории относительности до теории струн - [32]
Что же такое хроногеометрическая структура «деформированного» пространства-времени (которое обычно называют «искривленным»)? Это структура, в которой «расстояние-время» между двумя событиями по-прежнему дается определенным «квадратом интервала», но в которой, в отличие от случая пространства-времени Минковского, этот квадрат интервала имеет очень сложное математическое выражение для двух далеких событий. Зато, если рассмотреть очень близкие друг к другу события (как в пространстве, так и во времени), квадрат интервала будет определяться достаточно простой математической формулой, хотя и более сложной по сравнению с соответствующей формулой для пространства-времени Минковского. Как понял Эйнштейн в 1912 г., квадрат интервала между двумя событиями в деформированном пространстве-времени весьма напоминает квадрат расстояния между двумя точками искривленной поверхности, вложенной в обычное евклидово пространство.
В качестве примера искривленной поверхности возьмем поверхность Земли. Если рассмотреть небольшой участок земной поверхности, например участок в один квадратный метр, то, в принципе, его можно отождествить с небольшой частью плоскости (достаточно рассмотреть касательную плоскость к точке, расположенной недалеко от центра рассматриваемого участка). Таким образом, квадрат расстояния (т. е. расстояние, возведенное в квадрат) между двумя точками на этой небольшой поверхности будет в очень хорошем приближении равен квадрату расстояния между двумя точками на плоскости, который в свою очередь может быть получен с помощью теоремы Пифагора. Единственная сложность заключается в невозможности покрыть всю поверхность Земли с ее горами и долинами абсолютно регулярной сеткой координат (таких как длина и ширина).
На плоской поверхности, например на лежащем на столе листе бумаги, можно легко определить местоположение точки с помощью обычной прямоугольной сетки, какая используется в школьных тетрадках или на миллиметровой бумаге. Такую регулярную сетку уже невозможно реализовать на поверхности, имеющей всевозможные выпуклости и впадины. Чтобы зафиксировать любую точку на искривленной поверхности, мы, таким образом, используем два параметра, скажем x и y, которые больше не имеют простого смысла длины и ширины. Например, на поверхности Земли в качестве «первой координаты» x можно использовать долготу, а в качестве «второй координаты» y – широту. Следует отметить, что такие координаты можно использовать, даже когда земную поверхность невозможно аппроксимировать сферой: например, на возвышенности или в низине. При этом нет необходимости вводить третью координату (скажем, высоту над уровнем моря), поскольку двух первых координат (долготы и широты) будет достаточно, чтобы определить положение на Земле, а высота будет определяться некоторой функцией долготы и широты. Отсюда легко видеть, что если использовать сетку, определяемую долготой и широтой, на небольшой части поверхности Земли на склоне горы или ущелья, то эта сетка будет представлять собой деформацию привычной сетки из школьной тетрадки в клетку: поверхность по-прежнему будет разбиваться на ячейки двумя семействами линий, но каждая ячейка будет не квадратом, а чем-то вроде параллелограмма, точнее, ее стороны просто не будут равны друг другу и перестанут пересекаться под прямым углом.
Итак, локально можно сопоставить каждый небольшой фрагмент получившегося разбиения на ячейки с обычным разбиением на параллелограммы, сделанном на касательной плоскости. Обобщение теоремы Пифагора применительно к непрямоугольным треугольникам говорит нам, что квадрат расстояния между двумя узлами такой (плоской) сетки дается суммой квадратов разностей координат между двумя узлами и их удвоенным произведением. Чтобы определить квадрат расстояния между близкими точками вообще любой искривленной поверхности, точки которой фиксируются двумя координатами x и y, необходимо, таким образом, задать в каждой точке три величины: коэффициент перед квадратом dx² разности dx между первыми координатами двух точек, коэффициент перед квадратом dy² разности dy между вторыми координатами и коэффициент перед удвоенным произведением 2dxdy. [Мы рассматриваем математический предел, в котором точки бесконечно близки, отсюда символ d, обозначающий бесконечно малую разность.] Эти три коэффициента определяют геометрию (geometry) рассматриваемой поверхности и по этой причине обозначаются соответственно как g>xx, g>yy и g>xy, где буква g напоминает нам, что речь идет о геометрии.
Во времена обучения в Цюрихском политехническом Эйнштейн высоко ценил курс Карла Фридриха Гёйзера, посвященный «инфинитезимальной геометрии» поверхностей. Гёйзер читал лекции по теории, разработанной знаменитым математиком Карлом Фридрихом Гауссом и фактически изучающей тот самый квадрат расстояния между бесконечно близкими точками, про который мы только что говорили. В связи с этим в 1912 г. Эйнштейн вспомнил, что геометрия «деформированной» (или неплоской) поверхности определяется с помощью трех величин g>xx, g>yy, g>xy, заданных в каждой точке поверхности. Этот набор данных, определяющий для каждой точки поверхности значения трех величин
Расшифровка генетического кода, зашита от инфекционных болезней и патент на совершенную фиксацию азота, проникновение в тайну злокачественного роста и извлечение полезных ископаемых из морских вод — неисчислимы сферы познания и практики, где изучение микроорганизма помогает добиваться невиданных и неслыханных результатов… О достижениях микробиологии, о завтрашнем дне этой науки рассказывает академик АМН СССР О. Бароян.
Лишний вес, состояние хронического стресса, переедание, недовольство собственной внешностью – это наиболее распространенные жалобы 80 % современных женщин. Что делать, если косметика и экстремальные диеты не помогают, а постоянное ощущение нехватки сил не дает жить полноценной жизнью? Как замедлить метаболизм на этапе похудения и удержать массу тела? Как предотвратить переход преддиабета в диабет? Как не дать разрядиться нашей «батарейке» – щитовидной железе? Можно ли победить старение? Какие анализы совершенно бесполезны? Как подготовиться к визиту к эндокринологу? В книге Марины Берковской есть не только ответы на эти вопросы, но и четкие инструкции по управлению гормональным фоном.
Можно ли умереть от разбитого сердца? Действительно ли горе и невзгоды способны фатально повлиять на самый жизненно важный орган нашего организма? Возможно, мы совсем не случайно воспринимаем сердце как символ чувств. Дело в том, что эмоции действительно оказывают на сердце огромное влияние. Но насколько глубока связь между драматичным расставанием с партнером и сердечными заболеваниями? Доктор Никки Стамп исследует в своей книге так называемый «синдром разбитого сердца» – а также делится уникальным опытом, который она приобрела во время своей работы.
Каждый день в мире совершаются открытия и принимаются решения, влияющие на наше будущее. Но может ли кто-то предвидеть, что ждет человечество? Возможна ли телепортация (спойлер: да), как изменится климат, каким будет транспорт и что получится, если искусственный интеллект возьмет над нами верх? Станут ли люди счастливее с помощью таблеток и здоровее благодаря лечению с учетом индивидуальной ДНК? Каких чудес техники нам ждать? Каких революций в быту? В этой книге ведущие мировые специалисты во главе с Джимом Аль-Халили, пользуясь знаниями передовой науки, дают читателю представление о том, что его ждет впереди.
Наше поколение стало свидетелем необычайной победы человеческого разума — начала проникновения в космос. Перед молодежью открываются увлекательные, полные заманчивости перспективы межпланетных путешествий и открытий. Но есть еще и на нашей «обжитой» планете Земля много неизученных «белых пятен», среди них почти неизвестный на всю его глубину Мировой океан с его подводными горами и впадинами, со своим растительным и животным миром, со своими физическими законами. В изучении его большую пользу приносит гидроакустика — сравнительно молодая наука, имеющая большое будущее. Эта наука имеет большое прикладное значение.