Металлы в живых организмах - [3]

Шрифт
Интервал

После этого начинаются два важнейших процесса: окисление ("сжигание") части полученных обломков молекул, сопряженное с запасанием энергии окисления в виде фосфорноазотных органических соединений, и синтез новых молекул, в частности тех белков, которые нужны данному организму. При достаточном количестве пищи синтезируется и гликоген — углеводный биополимер, окисление которого дает много энергии. Это будущее "топливо" откладывается впрок в печени и мышечной ткани.

Энергия окисления переходит в скрытую химическую энергию фосфорно-азотных органических соединений (прежде всего аденозинтрифосфорной кислоты — АТФ) в результате сложного процесса, сопряженного с переносом электронов от окисляемого вещества к кислороду воздуха, которым дышит организм.

Понятно, что для выполнения такой работы необходимо, во-первых, ускорять только строго определенные реакции, чтобы продукты того или иного процесса не представляли собой смесь неопределенного состава; во-вторых, необходимо для этого иметь катализаторы, стимулирующие только те превращения в некоторой части молекулы, которые ведут к образованию требуемых обломков, т. е. сырья для следующих химических операций.

Выполнение операций в определенной последовательности требует пространственного разделения областей реакций. Они не могут происходить все в одном месте — нужна, очевидно, некоторая жесткая структура, нечто вроде каркаса, на котором производится постепенная. перестройка молекул. Значит, клетка не может быть однородной по всей своей массе. Химик назовет такую систему гетерогенной — разнородной. Действительно, клетка имеет ядро, оболочку и так называемые органеллы — небольшие частицы, в которых получается энергия (митохондрии), производится синтез белков (рибосомы), удаляются отходы производства (аппарат Гольджи); работают и другие устройства.

По мере усложнения организма клетка становится все более совершенной. Как и в машинном производстве, в клетке (и в коллективах клеток) огромную роль играет регулирование. В организмах оно достигается с помощью гормонов и нервных импульсов, так что весь организм в целом представляет собой единую систему с множеством тонких внутренних связей и органами восприятия сигналов внешней среды.

Вот теперь мы подошли к тому вопросу, о котором и будет речь в этой книге. Пригодны ли те органические соединения, о которых уже многое известно биологам и биохимикам, а именно белки, липиды (жиры), углеводы, — для строительства всех биологических машин, их регулирования и обеспечения их устойчивости в течение длительных сроков жизни организма?

Внимательный анализ этой проблемы и изучение опытных данных о составе живых систем приводят нас к выводу, что необходимое сочетание прочности основных биологических структур и высокой химической активности, характерной для реакции в клетках, не может быть достигнуто, если для создания биологических машин пользоваться только органическими веществами.

Необходимым компонентом живых систем должны быть ионы металлов.

Ознакомимся со свойствами некоторых биологически активных органических соединений и теми функциями, которые способны выполнять ионы металлов.

Из курса химии известно, как построены белки, жиры и углеводы. Их молекулы содержат цепи атомов. У белков атомы углерода соединены перемычками, состоящими из групп NH-СО. Перемычки возникают потому, что огромная молекула белка получается в результате соединения (конденсации) аминокислот. В простейшем случае аминокислота глицин NH>2-СН>2-COOH может образовать дипептид — продукт конденсации двух молекул глицина по реакции:

Дипептид — продукт конденсации двух молекул глицина

Таким путем, очевидно, можно соединять друг с другом и молекулы других аминокислот; всего в живых организмах насчитывается 20 аминокислот различного строения.

Каждая молекула белка состоит из нескольких сотен аминокислотных остатков — химики называют такую частицу полипептидом ("многопептидом").

Молекулы жиров содержат цепи атомов углерода и эфирные группы -СОО-, связывающие цепи жирных кислот и глицерина:

Молекулы жиров содержат цепи атомов углерода и эфирные группы -СОО-

(

— остаток жирной кислоты, например пальмитиновой С>15Н>31СООН).

Для молекул углеводов также характерно наличие цепей атомов углерода, но эти цепи для углеводов, относящихся к полисахаридам (крахмал, гликоген), содержат перемычки из атомов кислорода.

Мы только напоминаем об этих данных, так как для нас сейчас важно обратить внимание на распространенность в биологических объектах органических молекул, которые характеризуются наличием ковалентных связей.

Действительно, атомы углерода в цепочках -С-С-С-, имеющихся и в белках, и в жирах, и в углеводах, соединены парами общих электронов; связи между атомом углерода и атомом азота в перемычке (связующем звене) -NH-СО- также ковалентные; ковалентными являются и связи С-О в молекулах углеводов. Их энергия довольно велика.

Легко ли заставить молекулы биологически активных веществ вступать в реакции? Остановимся на одной из наиболее важных и общеизвестных реакций — реакции горения. Ведь мы знаем, что углеводы (например, обычный сахар), белки и жиры "сгорают" в организме, образуя в конечном счете воду и диоксид углерода (углекислый газ). Попробуем окислить сахар или жир до этих продуктов вне организма. Мы обнаружим, что сахар можно хранить годами на воздухе, а значит — в присутствии кислорода, и он не покажет никаких признаков окисления. Жир испортится — прогоркнет, т. е. станет добычей различных микроорганизмов, но тоже, конечно, не сгорит; признаки его окисления мы сможем обнаружить, но до превращения его в воду и диоксид углерода будет очень далеко. Белки подвергнутся высыханию, разрушительному действию микроорганизмов, но не сгорят!


Рекомендуем почитать
Ваш мозг. Что нейронаука знает о мозге и его причудах

До сих пор мозг является для нас одной из самых больших загадок. А ведь все процессы и механизмы нашего организма, личные качества и поведение зависят именно от него. В связи с этим кажется очевидным, что его изучение – это лучший способ познать и понять самих себя. Эта книга содержит в себе полное представление о функциях мозга, практические советы по поддержанию его здоровья, самые любопытные факты из области современной нейробиологии и ответы на все интересующие вас вопросы.


Пруст и кальмар. Нейробиология чтения

Как мы учимся читать? Мозг каждого нового читателя – ребенка, который только приступил к наработке этого навыка, – обладает необычайным свойством выходить за пределы своих первоначальных способностей, чтобы понимать письменные символы. В течение тысячелетий с того момента, как человек научился читать, произошла настоящая интеллектуальная эволюция всего нашего вида. Мозг у того, кто разбирает клинопись шумеров на глиняных табличках, функционирует иначе, чем у того, кто читает алфавиты, и уж тем более чем у того, кто знаком с новейшими технологиями.


Затерянный мир Дарвина. Тайная история жизни на Земле

Еще полвека назад палеонтологов и биологов озадачивали огромные толщи “молчащих” пород без следов многоклеточной жизни и ее внезапное – по геологическим меркам – появление в кембрийском периоде (так называемый кембрийский взрыв). Но потом стало ясно, что и нежнейшие организмы оставляли отметки в геологической летописи. Ученые, сообразившие, что и где следует искать, теперь активно исследуют “заговоривший” докембрий – настоящий “затерянный мир”, населенный оригинальными организмами, не похожими на современные.


Роль движений глаз в процессе зрения

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Неандерталец. В поисках исчезнувших геномов

Шведский генетик Сванте Пэабо давно лелеял мечту, казавшуюся несбыточной: выделить ДНК из египетских мумий и, таким образом, “поближе познакомиться” с людьми, жившими тысячи лет назад. Юношеская одержимость повела его тернистым путем — через мучительный научный поиск, борьбу за чистоту экспериментов и интеллектуальную честность, дипломатические маневры и бюрократические войны… И завела намного дальше в глубину веков, к прочтению неандертальского генома, радикально меняющему все представления и о самих неандертальцах, и об их взаимодействии с предками современного человечества. “Неандерталец” — это не только увлекательный рассказ о сенсационном прорыве, но и документ, фиксирующий важную веху в истории науки: становление палеогеномики, новой дисциплины, позволяющей методом исследования древних ДНК восстанавливать картину эволюции нашего вида в таких подробностях, о каких мы раньше не смели и мечтать. (В исходнике отсутствует расшифровка примечаний после 31)


…А вослед ему мертвый пес: По всему свету за бродячими собаками

Это книга о бродячих псах. Отношения между человеком и собакой не столь идилличны, как это может показаться на первый взгляд, глубоко в историю человечества уходит достаточно спорный вопрос, о том, кто кого приручил. Но рядом с человеком и сегодня живут потомки тех первых неприрученных собак, сохранившие свои повадки, — бродячие псы. По их следам — не считая тех случаев, когда он от них улепетывал, — автор книги колесит по свету — от пригородов Москвы до австралийских пустынь.Издание осуществлено в рамках программы «Пушкин» при поддержке Министерства иностранных дел Франции и посольства Франции в России.