Металлы, которые всегда с тобой - [2]
7 планет и 7 металлов было известно в древности, и вообще число 7 считалось магическим. А если отбросить магию, то следует признать, что древние были правы насчёт космического происхождения металлов. Действительно, атомы металлов, да и вообще всех химических элементов, возникли в недрах звёзд.
Астрономы, поэты и влюблённые, обращая свой взор к звёздам, видели примерно одно и то же. И лишь физики, взглянув на светила своим особым «физическим» взглядом, почище иных фантастов смогли представить таинство рождения звёздных атомов. Начало всему — атом водорода, из которого, по существу, построена Вселенная. Наш мир более чем на 70 % состоит из этого элемента — недаром ему присвоен первый номер. В условиях чудовищных звёздных давлений и температур атомы водорода, сливаясь, образуют атомы более тяжёлых элементов и, в первую очередь гелия — элемента номер два. Синтез гелия — ядерная реакция, знаменитый «термояд» — и есть та печка, от которой пляшут атомы остальных элементов.
В самом конце последовательных ядерных реакций при совершенно невообразимой температуре 4 млрд. градусов рождаются атомы железа. Все имеет свой предел, и цепочка ядерных превращений — тоже. С появлением железа она обрывается. На этом термоядерные ресурсы звезды исчерпаны. Преодолеть железный барьер ей не под силу. Звезда начинает сжиматься. Затем она взрывается, рассеивая вокруг своё вещёство. Астрономы говорят в таких случаях: вспыхнула сверхновая звезда. А это значит — родилось железо.
Теперь с большой долей вероятности мы можем ответить на вопрос: почему железо падает с неба? Последнее время появились весьма обоснованные предположения, что наша Солнечная система образовалась именно в результате взрыва сверхновой звезды. Разлетевшиеся при этом осколки — это астероиды, минипланеты, со множеством из которых часто встречается Земля. Те из них, что сумели пробить броню нашей атмосферы, попадают к нам в виде метеоритов.
Несколько слов о кларках
Да, железо один из самых распространённых элементов, и это не случайно. Поведением атомов, где бы они ни находились, управляет Великий Периодический Закон. Характер же химического элемента, то есть его свойства и распространённость, определены порядковым номером в менделеевской таблице.
Но как узнать, много или мало содержится данного элемента в природе? И чего, например, больше: свинца, известного с незапамятных времён, или незнакомца циркония, производство которого освоили всего лишь несколько десятилетий назад? Для этого нужны средние данные распространённости элементов. Счёт на кристаллы и молекулы, который ведут геологи, не устраивает геохимиков, учитывающих атомы.
Для того чтобы знать распространённость элемента, нужно вычислить среднее значение его содержания, допустим, в земной коре. Это же так очевидно! Увы, очевидное становится таковым далеко не всегда и не сразу. То, что было вполне ясно ещё 100 лет назад главному химику геологической службы США и куратору минералогического собрания Национального музея Франку Уиглсуорту Кларку, совершенно не воспринималось его коллегами.
Кларк затеял очень трудоёмкую, кропотливую и, по мнению многих, бесполезную работу, на которую ушло 40 лет. Есть время собирать материал и время его обобщать. Так вот, Кларк обобщил многочисленные данные о составе различных минералов, которые скрупулёзно до него получили другие исследователи. Четыре десятилетия жизни и горы статистических выкладок. Нужно было обработать результаты более чем 5000 анализов и, наконец, установить, что в составе земной коры преобладают 8 химических элементов: кислород, кремний, алюминий, железо, магний, кальций, калий и натрий. И вот когда труд Кларка был завершён, стало очевидным уже для всех, что он совершил переворот в геохимии.
В 1923 году наш замечательный учёный, академик Александр Евгеньевич Ферсман предложил в честь Ф. Кларка назвать кларком числовую оценку среднего содержания элемента в земной коре или других природных образованиях. Позднее Ферсман сказал: «Только в самые последние годы выяснилось, что метод, предложенный американским химиком Кларком ещё в 1889 году, не только представляет одно из крупнейших завоеваний в совремённой геохимии, но и проливает свет на взаимоотношения между строением вещёства, с одной стороны, распределением элементов — с другой, и, наконец, с общим характером химических процессов во всем космосе, с третьей».
Кларк железа в земной коре равен 4,65 — это значит, что таково его среднее содержание в процентах. К этому стоит добавить, что по распространённости в земной коре железо занимает четвёртое место среди всех элементов и второе среди металлов после алюминия.
Теперь вернёмся к вопросу: чего на Земле больше, свинца или циркония? Судите сами: кларк циркония 0,017, а свинца 0,0016. Следовательно, циркония в земной коре содержится в 10 раз больше. И вообще, даже беглое знакомство с кларками вызывает удивление. Оказывается, мы не всегда правильно судим о распространённости химических элементов. Так, например, кларк титана в 100 раз больше кларка меди, а кларк редкостного на первый вгляд галлия более чем в 200 раз превышает кларк ртути. О чем это говорит? Только о привычке считать, что металлы встречаются в природе в виде руд или самородков. Короче говоря, мы привыкли к металлам концентрированным. Кларки же показывают, что химические элементы {а металлы не исключение) находятся в основном в состоянии рассеяния. Это особое состояние атомов ещё в начале нашего века выявил выдающийся естествоиспытатель совремённости Владимир Иванович Вернадский. По этому поводу он образно заметил, что в каждой пылинке отражается общий состав космоса.
Есть сомнения по поводу названия."С названием этой статьи приключилась почти мистическая история. Рабочим названием было: «Интуиция слепа без знания», поскольку Виктор Николаевич не раз с огорчением говорил о том, что люди тренируются в основном по интуиции. Но при верстке первой части статьи это название каким-то непостижимым образом изменилось на прямо противоположное: «Знание слепо без интуиции» (!!!), хотя в оглавлении номера стояло правильное. Вторая часть выходит с «правильным» названием. Но этот случай навел на мысль расставить на свои законные места интуицию и знание.".
Это – книга о долголетии. Но не только. В первую очередь это книга о любви к своим близким, о горе личных потерь, о способе преодоления трудностей, о счастье, о добром отношении к людям. Леонид Бененсон – первый человек в России, который создал для неизлечимых больных уникальную систему поддержки, позволяющую жить достойно и без боли до самой старости. Этот человек знает о долголетии все, ведь он кардиолог и по совместительству главный врач. Его советы – кладезь знаний, бесценный опыт, уже сохранивший жизни тысячам больных.
В книге западногерманского ученого говорится об основах физиологии дыхания, простейших элементах дыхательной гимнастики.Приведенные упражнения предназначены для коррекции дыхания, способствуют улучшению функциональной деятельности организма в целом и при отдельных заболеваниях: бронхиальной астме, сколиозах, ларингите и т. д.Широкому кругу читателей.Научно-популярное издание.
В книге с учетом последних достижений биологии рассказано о механизмах поддержания здоровья, причинах старения и факторах, от которых в значительной степени зависит долголетие человека. В связи с этим разъяснены наиболее вероятные механизмы учащения ряда тяжелых заболеваний в процессе старения и рассказано о некоторых практических рекомендациях по индивидуальной защите от таких заболеваний.
Доктор Дэвид Агус, врач, который сумел максимально продлить жизнь Стиву Джобсу, автор двух бестселлеров о здоровой и долгой жизни, в своей третьей книге раскрыл секреты медицины настоящего, рассказал о ее будущем и объяснил, как до него дожить и сохранить здоровье.Уже через несколько лет, по исследованиям доктора Агуса, двигаясь теми же темпами, что сейчас, медицина позволит нам получить хорошую физическую форму и похудеть без диет, создаст каждому иммунную систему для борьбы с главной проблемой современного мира – раком, будет менять ДНК, снизит до минимума риск сердечного приступа, остановит старение и разработает препараты без побочных эффектов.Это все – картина будущего!Но ради его достижения начать оберегать свое здоровье и соблюдать правила, которые вы найдете в этой книге, нужно с самого первого дня, как вы начнете ее читать, то есть уже сегодня!
В практике любого врача, и особенно терапевта, ежедневно встречаются пациенты, которые в силу своего заболевания самостоятельно не передвигаются, полноценно, в течение длительного периода времени себя не обслуживают. Это так называемые маломобильные больные.В настоящее время количество зарегистрированных инвалидов в России составляет около 10 % от общей численности населения страны. Часть из них в силу тяжести своего заболевания полностью обездвижены, что, в свою очередь, порождает тяжелые осложнения, определяющие неблагоприятный исход заболевания.В данном руководстве мы изложили основные причины, приводящие к длительной иммобилизации, ее осложнению и исходам, а также дали клинические рекомендации по ведению маломобильных пациентов на амбулаторном этапе.