Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - [14]

Шрифт
Интервал

и ее последующее распространение приводит ее к преобразованию в vis viva. В свою очередь, vis viva передается другому телу, вовлеченному в столкновение, таким образом изменяя его движение. Используя эту оригинальную модель вещества, Бернулли смог показать, как и Гюйгенс, что и vis viva, и импульс при столкновении сохраняются. Таким образом, Бернулли обеспечил оригинальную парадигму Лейбница математической и физической основой, расширив ее.

Когда XVIII век подошел к концу, область физики, которую сегодня мы называем классической механикой, действительно вступила в свои права. Галилео показал, что можно было понять Вселенную через осторожное наблюдение и математику. Многие продолжали строить на прочном научном фундаменте, который он заложил. Со времен Галилео математика стала еще более влиятельной, а ее приложение к физическим проблемам — более распространенным. Работа Галилео дала базу для сохранения «чего-то», в чем в конечном счете распознали сохранение механической энергии, или, другими словами, преобразование потенциальной энергии в кинетическую энергию — и наоборот.

Это понимание выросло из попытки лучше понять импульс, силу, вещество, а также энергию. Хотя Ньютон опровергал сохранение энергии, он действительно доказал универсальное сохранение импульса, дав математическое и физическое описание силы, и представил законы движения земных и небесных тел.

Работы других исследователей уточнили и дополнили его исследования. Даже рабочее определение вещества как действия «крошечных пружин», далекое от полного, оказалось успешным с точки зрения решения проблем физики. Действительно, казалось, что проблемные вопросы в значительной степени находились «под контролем». Тем не менее нерешенных вопросов было все еще много. Среди них, возможно, одним из самых непростых было тепло.

Глава 4

Недостающее звено

Тепло: последняя деталь в загадке об энергии

Большую часть наших знаний об энергии можно отнести к двум областям физики: классической механике и термодинамике. Эксперименты с качающимися маятниками, шарами, катящимися по наклонным плоскостям, и объектами, падающими со зданий, помогли многое понять о свойствах и поведении энергии, но картина была все еще очень неполной. Понадобились исследования термодинамики, чтобы раскрыть последнюю часть загадки об энергии, ту, которая оставалась нетронутой столь долго, — тепло.

Чтобы мы по-настоящему поняли энергию и ее фундаментальную природу, нам понадобились открытия, сделанные в механике за тысячи лет и в термодинамике — за несколько сотен. После стольких лет и затраченных усилий открылась важнейшая истина: энергия не создается и не разрушается; она плавно переходит из одной формы в другую.

Тепловая теория

Намеки на понимание сохранения энергии, как это было с импульсом, появились в 1840 году. Но в отличие от импульса, который был сравнительно быстро принят и осознан, энергия все еще оставалась тайной. Стало понятно, что энергия может быть потенциальной или кинетической и одна «трансформируется» в другую; таким образом, принцип сохранения в этом конкретном случае казался бесспорным. На самом же деле эти рассуждения были далеки от полного понимания. Самой большой частью загадки, которая все еще ждала объяснений, было тепло.

Системы, такие как объекты, катящиеся по наклонным плоскостям, и качающиеся маятники (теперь, я уверен, они должны быть вашими любимчиками), были хорошо описаны теорией механики, изложенной в «Началах» Ньютона. Этот тип физических проблем когда-то был решен при помощи геометрии (что сделал Галилео), а теперь описан несколько более абстрактными, но намного более компактными и эффективными уравнениями аналитической геометрии (что сделал Декарт) и дифференциальным и интегральным исчислением (что сделали Лейбниц и Ньютон независимо друг от друга).

Эти новые математические инструменты с блеском позволили решить проблемы механики. Отношения между фактическими физическими величинами (такими как сила и импульс) и математикой, описывающей их, были надежно доказаны и сопровождались экспериментальной частью; таким образом, можно было записать математические уравнения, описывающие физическую систему, и затем проверить эту теорию в лаборатории. Действительно, физика механики была огромным успехом. Но где в эту замечательную новую структуру вписывалось тепло и было ли для него вообще место в ней?

К концу XVIII века тепло наряду с родственными ему явлениями — светом, магнетизмом и электричеством — считали невесомой жидкостью. Эти невесомые жидкости отделяли от «обычной материи» (понятой только слегка лучше), из которой состоят предметы повседневного пользования, из-за отсутствия у них определенной структуры. Их считали своего рода жидкостью, способной течь подобно воде, что позволяло им свободно перемещаться сквозь предполагаемое пространство, которое должно было существовать в обычной материи, — перемещаться, как, например, солнечный свет проходит через стакан или окно или как тепло сквозь кофейную чашку доходит до вашей руки.

Само собой разумеется, теории XVIII века, описывающие физические явления, носили качественный характер, когда дело касалось электричества, света, тепла и т. д. Это резко контрастировало с физическими проблемами механики, описанными изящной математикой.


Рекомендуем почитать
Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Остров знаний. Пределы досягаемости большой науки

Человеку свойственна тяга к знаниям, но все, что доступно нашим наблюдениям, – это лишь крошечная часть окружающего мира. В книге «Остров знаний» физик Марсело Глейзер рассказывает, как мы искали ответы на самые фундаментальные вопросы о смысле нашего существования. При этом он приходит к провокационному выводу: у науки, нашего основного инструмента познания, есть непреодолимые ограничения.Излагая драматичную историю человеческого стремления все понять, книга «Остров знаний» предлагает исключительно оригинальную трактовку идей многих величайших мыслителей, от Платона до Эйнштейна, рассказывает, как их искания влияют на нас сегодня.


Десять самых красивых экспериментов в истории науки

В наше время научные открытия совершатся большими коллективами ученых, но не так давно все было иначе. В истории навсегда остались звездные часы, когда ученые, задавая вопросы природе, получали ответы, ставя эксперимент в одиночку.Джордж Джонсон, замечательный популяризатор науки, рассказывает, как во время опытов по гравитации Галилео Галилей пел песни, отмеряя промежутки времени, Уильям Гарвей перевязывал руку, наблюдая ход крови по артериям и венам, а Иван Павлов заставлял подопытных собак истекать слюной при ударе тока.Перевод опубликован с согласия Alfred A, Knopf, филиала издательской группы Random House, Inc.


Безопасность жизнедеятельности. Шпаргалка

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать. Пособие предназначено для студентов высших и средних образовательных учреждений.



Мозг: прошлое и будущее

Wall Street Journal назвал эту книгу одной из пяти научных работ, обязательных к прочтению. Ученые, преподаватели, исследователи и читатели говорят о ней как о революционной, переворачивающей представления о мозге. В нашей культуре принято относиться к мозгу как к главному органу, который формирует нашу личность, отвечает за успехи и неудачи, за все, что мы делаем, и все, что с нами происходит. Мы приравниваем мозг к компьютеру, считая его «главным» в нашей жизни. Нейрофизиолог и биоинженер Алан Джасанов предлагает новый взгляд на роль мозга и рассказывает о том, какие именно факторы окружающей среды и процессы человеческого тела формируют личность и делают нас теми, кто мы есть.


Научные сказки периодической таблицы. Занимательная история химических элементов от мышьяка до цинка

Таблица Менделеева занимает в нашем воображении такое же прочное место, как и алфавит, календарь и знаки зодиака. Но сами химические элементы, помимо нескольких самых распространенных: железа, углерода, меди, золота, – покрыты завесой тайны. По большей части мы не знаем, как они выглядят, в каком виде встречаются в природе, почему так названы и чем полезны для нас. Добро пожаловать на головокружительную экскурсию по страницам истории и литературы, науки и искусства! «Научные сказки» познакомят вас с железом, которое падает с неба, и расскажут о скорбном пути неонового света.


Письма астрофизика

Эта книга не только о том, как устроена Вселенная, хотя, казалось бы, разговоров как раз на эту тему следует ожидать от увлеченного астрофизика. Все дело в том, что поклонники и противники Нила Деграсса Тайсона в своих письмах спрашивают его не только об инопланетной жизни, звездных системах, путешествиях в пространстве, параллельных вселенных и прочих космических штучках. Они хотят знать, как относиться к теории эволюции, как построить вечный двигатель, когда ждать конца света, как пережить утрату близкого человека, изменить свою жизнь… И автор осторожно делится своим мнением на этот счет, обнаруживая не только широкий кругозор и интеллигентное чувство юмора – о котором всем известно, – но также и мудрость, и чуткость, и простоту.


Астрофизика с космической скоростью, или Великие тайны Вселенной для тех, кому некогда

Темное вещество, гравитация, возможность межгалактических полетов и Теория Большого взрыва… Изучение тайн Вселенной подобно чтению захватывающего романа. Но только если вы хорошо понимаете физику, знаете, что скрывается за всеми сложными терминами и определениями. В самых головоломных вопросах науки вам поможет разобраться Нил Деграсс Тайсон – один из самых авторитетных и в то же время остроумных астрофизиков нашего времени. Он обладает особым даром рассказывать о сложнейших научных теориях понятно, интересно и с юмором. Новая книга Нила Тайсона – это очередное захватывающее путешествие в мир современной науки.