Мечты об окончательной теории: Физика в поисках самых фундаментальных законов природы - [97]
Десятью днями спустя рекомендации подкомитета Вожички были единогласно поддержаны головным консультативным комитетом по физике высоких энергий министерства энергетики. Именно в это время предлагаемый новый ускоритель получил свое теперешнее имя: Сверхпроводящий СуперКоллайдер (ССК) (по-англ. Superconducting Supercollider, SSC. – Прим. перев.). 11 августа 1983 г. министерство энергетики поручило консультативному комитету по физике высоких энергий наметить план проведения исследовательских и конструкторских работ, необходимых для проекта ССК, а 16 ноября 1983 г. министр энергетики Дональд Ходель объявил решение министерства о прекращении работы над проектом ИЗАБЕЛЛА[235] и обратился к соответствующим комитетам палаты представителей и сената за разрешением направить выделенные на проект ИЗАБЕЛЛА средства на новый проект ССК.
Поиск механизма нарушения электрослабой симметрии безусловно был не единственным доводом в пользу ССК. Обычно при строительстве новых ускорителей типа находящихся в ЦЕРНе или Фермилабе всегда ожидается, что при переходе к более высокому уровню энергий будут обнаружены новые выдающиеся явления. Такие ожидания почти всегда оправдывались. Например, при строительстве старого протонного синхротрона в ЦЕРНе не было никаких определенных идей относительно того, что на нем будет открыто. Безусловно, никто не предвидел, что эксперименты с полученными на этом ускорителе нейтринными пучками приведут к открытию в 1973 г. слабых взаимодействий нейтральных токов, подтвердивших единую теорию электрослабых взаимодействий. Сегодняшние большие ускорители являются потомками циклотронов, построенных в начале 1930-х гг. в Беркли Эрнстом Лоуренсом с целью ускорения протонов до столь высоких энергий, чтобы они смогли преодолеть электрическое отталкивание протонов атомного ядра. При этом у Лоуренса не было никаких идей о том, что может быть обнаружено, когда протоны проникнут вглубь ядра. Бывает и так, что определенное открытие анонсируется заранее. Например, построенный в конце 1950-х гг. бэватрон в Беркли был специально рассчитан на такую энергию (примерно 6 ГэВ), чтобы появилась возможность рождать антипротоны – античастицы протонов, входящих в состав всех обычных атомных ядер. Работающий в наши дни электрон-позитронный коллайдер в ЦЕРНе был построен в первую очередь так, чтобы энергия пучков была достаточной для рождения очень большого количества Z-частиц, которые затем использовались для того, чтобы подвергнуть теорию электрослабых взаимодействий жесткой экспериментальной проверке. Но даже тогда, когда постройка нового ускорителя мотивируется какой-то определенной задачей, наиболее важные открытия на нем происходят совершенно неожиданно. Именно так было с бэватроном в Беркли. Антипротоны на нем действительно были получены, но самым главным достижением стало рождение большого числа неожиданных новых сильновзаимодействующих частиц. Точно так же, с самого начала подчеркивалось, что эксперименты на Суперколлайдере могут привести к значительно более важным открытиям, чем подтверждение механизма нарушения электрослабой симметрии.
Опыты на ускорителях сверхвысоких энергий типа ССК могут даже решить самую важную проблему, с которой столкнулась современная физика, – проблему недостающей темной материи. Нам известно, что большая часть массы галактик, и еще большая часть массы скоплений галактик является темной, т.е. не состоит из светящихся звезд типа Солнца. Еще больше темной материи требуется для того, чтобы объяснить скорость расширения Вселенной в рамках популярных космологических теорий. Такой избыток темной материи не может существовать в форме обычных атомов. Если бы это было так, то существование дополнительного большого числа протонов, нейтронов и электронов повлияло бы на расчеты распространенности легких элементов, образованных в первые несколько минут расширения Вселенной, так что результаты этих расчетов перестали бы согласовываться с наблюдениями.
Так что же такое темная материя? В течение многих лет физики строят предположения о существовании экзотических частиц того или иного сорта, из которых могла бы состоять темная материя. Однако до сих пор эти гипотезы не привели к определенным результатам. Если в экспериментах на ускорителе будет обнаружен новый тип долгоживущих частиц, то, измерив их массу и взаимодействия, мы сумеем вычислить, сколько таких частиц осталось после Большого взрыва, и решить, могут ли они составлять всю или только часть темной материи во Вселенной.
Недавно эти вопросы обострились в результате наблюдений, сделанных спутником СОВЕ (Cosmic Background Explorer). Помещенные на этом спутнике чувствительные приемники микроволнового излучения обнаружили следы ничтожных различий температуры этого излучения при переходе от одной части неба к другой. Эти различия сохранились от эпохи, когда возраст Вселенной был равен всего тремстам тысячам лет. Считается, что такие неоднородности температуры возникли за счет влияния гравитационных полей, созданных слегка неоднородным распределением материи в ту эпоху. Момент времени через триста тысяч лет после Большого взрыва имел решающее значение в истории Вселенной. Она впервые стала прозрачной для излучения, и обычно считается, что неоднородности в распределении материи начали после этого момента собираться в комки под действием собственного притяжения, что привело в конце концов к образованию тех галактик, которые мы видим на небе. Однако неоднородности в распределении материи, вытекавшие из результатов измерений СОВЕ, не соответствуют
В книге крупнейшего американского физика-теоретика популярно и увлекательно рассказывается о современном взгляде на происхождение Вселенной. Описаны факты, подтверждающие модель «горячей Вселенной», рассказана история фундаментальных астрофизических открытий последних лет. С большим мастерством и научной точностью излагается эволюция Вселенной на ранних стадиях ее развития после «Большого взрыва».В новое издание вошла также нобелевская лекция С. Вайнберга, в которой описывается история возникновения единой теории слабых и электромагнитных взаимодействий.Для читателей, интересующихся проблемами космологии.
Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн.
Десятки лет один из самых известных ученых нашего времени заставляет общество задуматься о фундаментальных законах природы и о неразрывной связи науки и социума. В своей новой книге «Всё ещё неизвестная Вселенная» Стивен Вайнберг освещает широкий круг вопросов: от космологических проблем он переходит к социальным, от астрономии, квантовой механики и теории науки — к ограниченности современного знания, искусству научных открытий и пользе ошибок. Лауреат Нобелевской премии Стивен Вайнберг делится своими взглядами на захватывающие фундаментальные вопросы физики и устройства Вселенной.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.