Мечта Эйнштейна. В поисках единой теории строения - [7]

Шрифт
Интервал

В 1916 году Эйнштейн распространил специальную теорию относительности, касавшуюся только равномерного прямолинейного движения, на все виды движения. В результате получилась общая теория относительности, из которой следует, что пространство может быть не только растянуто, но и искривлено, причём настолько сильно, что перестает существовать во Вселенной. (Речь об этой теории пойдёт в гл. 2.)

Мечта Эйнштейна

Квантовая теория и теория относительности – столпы современной физики. Одна описывает микрокосм, другая (общая теория относительности) – макрокосм, и обе они прекрасно справляются со своими функциями в соответствующих областях. Когда отказывает классическая (ньютонова) теория, когда она больше не может давать ответ на наши вопросы, на сцену выходят две теории, дающие правильные ответы. Правда, расплачиваться приходится потерей наглядности. Если в классической (ньютоновой) теории всегда можно было представить себе, что происходит, в новых теориях это не так. Пользуясь ими, мы вынуждены отказываться от мира ощущений и принимать новые, странные понятия.

Но раз классическая теория не годится для описания микро- и макрокосма, возникает естественный вопрос – не отказывают ли при каких-то условиях квантовая теория и теория относительности? Мы уже видели, что при больших скоростях ньютонову теорию приходится дополнять теорией относительности. Точно так же для больших скоростей пришлось видоизменить и квантовую теорию. Автором этой новой теории, получившей название релятивистской 20 квантовой механики, стал английский физик Поль Дирак.

Квантовая теория и общая теория относительности – совершенно разные теории, характеризующиеся различными «языками». Кажется даже, что между ними нет никакой связи, ничего общего. Но почему две теории, почему нет одной, которая описывала бы и микро- и макрокосм? Более того, если вспомнить о четырёх фундаментальных взаимодействиях, то проявится новый аспект проблемы – гравитационные взаимодействия описываются общей теорией относительности, а остальные три (электромагнитные, сильные и слабые) рассматриваются в квантовой теории. Ни одна теория не охватывает всех четырёх полей. Кроме того, остаются трудности с элементарными частицами – непонятно, например, какая связь между двумя фундаментальными семействами, лептонов и кварков.

Эйнштейн мечтал об одной теории, которая охватывала бы все явления, он мечтал о единой теории поля. Сначала его намерения были весьма скромны – он собирался лишь объединить гравитационное и электромагнитное поля, т.е. построить одну теорию, которая описывала бы оба эти поля. Он рассчитывал с помощью такой теории объяснить и природу элементарных частиц. К сожалению, ему это не удалось. Грандиозной цели – создания теории, объединяющей все физические явления и преодолевающей разрыв между общей теорией относительности и квантовой теорией, дающей простое и единое толкование всех полей и их взаимодействий с элементарными частицами – Эйнштейн так и не достиг. Последние 30 лет своей жизни он отдал поискам такой теории; другие крупные учёные – Гейзенберг, Эддингтон и Паули – также посвятили остаток дней достижению этой, по-видимому, недосягаемой цели.

А вдруг мы просто гонимся за жар-птицей? Да и существует ли она вообще? И что будет, когда мы её поймаем? Ведь тогда во всей Вселенной не останется ничего неизведанного, что вряд ли придётся по нраву большинству физиков. Как тут не вспомнить роман Хеллера «Уловка-22» – с одной стороны, мы бьёмся над созданием единой теории, потому что такова природа человека, а с другой стороны, если нам это удастся, пострадает физика, ведь не к чему будет стремиться.

Попробуем разобраться в ситуации. Должна ли такая теория объяснять всё на свете? Как далеко вообще простирается знание? Многие физики считают такие «глобальные вопросы» наивными. На первый взгляд вопрос «Что такое свет?» не относится к их числу, однако ответить на него пока не удаётся. Мы знаем, как ведёт себя свет, и можем описать его поведение со значительной степенью точности, но что такое свет нам точно не известно. Неяснодаже, что такое электрон, как, впрочем, и любая другая частица. Можно только описать их поведение с помощью вероятностных функций.

У читателя может сложиться впечатление, что существует бесконечная вереница теорий, каждая последующая в которой совершеннее предыдущей. Но разве в действительности существует такой бесконечный ряд теорий? Видимо, нет, поскольку квантовой механикой постулируется противоречащий этому принцип неопределённости. По мере того, как мы пытаемся разглядеть всё более мелкие объекты, увеличивается «размытость».

Означает ли это, что теперешние теории – предел, который нам не перешагнуть? Конечно, нет, ведь мы видели раньше, что осталось множество вопросов, на которые пока нет ответа: взаимосвязь четырёх фундаментальных полей, связь между квантовой теорией и общей теорией относительности, взаимосвязь лептонов и кварков, дальнейшая судьба Вселенной… И это лишь некоторые из нерешённых проблем. Мы будем искать ответы на эти вопросы, и несмотря на трудности, которые кажутся почти непреодолимыми, стремиться к полному объединению. Известно, что современные теории прекрасно описывают природу, но они тоже несовершенны, как и их предшественницы – они тоже откажут, если попытаться распространить их на слишком широкий круг явлений. Впрочем, условия, при которых они могут отказать, достаточно далеки от сферы нашего опыта и от того, что мы привыкли считать микро- и макрокосмосом. Прежде чем говорить об этих условиях, следует рассказать немного об основных современных теориях. В следующей главе речь пойдёт об общей теории относительности.


Рекомендуем почитать
Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Вселенная погибнет от холода. Больцман. Термодинамика и энтропия

Людвиг Больцман - одна из главных фигур в современной физике. Развив активную деятельность в Вене конца XIX века, он произвел революцию в изучении материи, включив в него вероятность, и всеми силами отстаивал существование атомов в то время, когда многие философы и даже влиятельные ученые отрицали его. Несмотря на то что обновленное ученым понятие энтропии и основывающееся на нем начало термодинамики заложили основы квантовой и релятивистской революции в последующем веке, категоричные взгляды Больцмана не всегда встречали поддержку коллег, и это непонимание, возможно, было причиной его трагического самоубийства.


Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру.


Наблюдения и озарения, или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой.


Коллайдер

Осенью 2008 года газеты запестрели заголовками, сообщавшими» будто в недрах Большого адронного коллайдера (БАК), на котором физики собирались расщепить вещество на элементарные частицы, родятся микроскопические черные дыры, способные поглотить Землю.Какое значение имеет БАК для науки? Что ученые ищут? Почему физика, возможно, вскоре совершит один из величайших рывков в своей истории? Все эти вопросы обсуждаются в книге «Коллайдер». Автор, кроме всего прочего, доказывает, почему невозможно ни практически, ни теоретически, что на БАК появятся черные мини-дыры, которых все так боятся.