Мечта Эйнштейна. В поисках единой теории строения - [31]

Шрифт
Интервал

Другое объяснение – «маяк», испускающий один или два пучка импульсов. При вращении маяка лучи скользят по Земле, подобно тому как луч маяка скользит по кораблю в море. Всякий раз, когда луч попадает на Землю, регистрируется импульс. Такая модель кажется вполне разумной, и самым подходящим кандидатом (если только импульсы не слишком частые) можно считать вращающийся белый карлик.


Крабовидная туманность


Но тут в Крабовидной туманности был открыт пульсар, имевший частоту 30 импульсов в секунду. Белые карлики не могут вращаться так быстро – они просто разлетятся. Следовательно, этот пульсар мог быть только вращающейся нейтронной звездой. Томми Голд из Корнеллского университета давно утверждал, что она гораздо больше подходит на эту роль. Он проделал соответствующие вычисления для энергии излучения нейтронной звезды, вращающейся со скоростью 30 оборотов в секунду, и сравнил её с уже известной энергией излучения Крабовидной туманности. Результаты были так близки, что сомнения отпали – пульсар в Крабовидной туманности должен быть нейтронной звездой, а это означало, что все пульсары, по-видимому, одинаковы.



Пульсар в Крабовидной туманности. На верхней фотографии показано изменение яркости. Внизу – диаграмма зависимости яркости от времени


Очень скоро в мельчайших подробностях была разработана возможная модель. Вращающаяся нейтронная звезда обладает очень сильным магнитным полем, которое вращается вместе с ней. Такая интенсивность поля объясняется коллапсом: даже если первоначально поле было слабым, при коллапсе оно «концентрируется» и становится чрезвычайно сильным. Заряженные частицы с поверхности нейтронной звезды будут двигаться вовне по силовым линиям, испуская при этом электромагнитные волны (радиоволны и видимое излучение). Особенно важным в этой модели было то, что ось магнитного поля не обязательно должна совпадать с осью вращения. Излучение исходит от южного и северного магнитных полюсов звезды, и если его направление было, положим, перпендикулярно оси вращения, луч будет перемещаться по окружности так же, как луч маяка. Если мы окажемся на его пути, то заметим вспышку электромагнитного излучения.

Размер нейтронной звезды в поперечнике – от 15 до 30 км. Её поверхность отличается исключительной прочностью (в миллионы раз прочнее стали), а под ней располагается то, что называется сверхтекучей жидкостью: смесь нейтронов и других частиц. Возможно, в центре находится небольшое ядро.

Вскоре после открытия пульсаров было замечено, что скорость их вращения медленно, очень медленно уменьшается – их период за месяц возрастает примерно на одну миллионную долю секунды. Этого следует ожидать, если предположить, что они испускают энергию в пространство (а так оно и есть). Неожиданным оказалось то, что у некоторых из них период внезапно «подскакивал». Эти странные скачки астрономы назвали проскальзыванием. Сейчас мы знаем, что по крайней мере у Крабовидной туманности это было связано со «звёздотрясением». При уменьшении скорости вращения звезды её сплющенная у полюсов поверхность «расправляется» и на поверхности образуется небольшая трещина.


Некоторые итоги

Теперь, когда мы знаем, как эволюционирует звезда, давайте остановимся и вернёмся к вопросу, который задавали себе в начале главы. Когда общая теория относительности перестаёт работать? Другими словами, когда она становится неадекватной и возникает потребность в другой (ещё не созданной) теории? Задавая тот же вопрос в применении к ньютоновой теории, мы обнаружили, что она неприменима к атомам, для этой области требовалась другая теория – квантовая. Но квантовая теория отказывает при очень больших скоростях, и её следует дополнить специальной теорией относительности.

Для того чтобы заниматься обычными звёздами, общая теория относительности не нужна, вполне достаточно ньютоновой теории, которая хорошо работает в этой области. Но нам важно было обсудить жизненный цикл звезды, чтобы подготовить почву для описания таких объектов, как белые карлики и нейтронные звёзды.

В случае белых карликов Чандрасекару удалось добиться успеха, когда он применил одновременно и квантовую теорию и специальную теорию относительности. Без них не удалось бы объяснить процессы, происходящие в белых карликах, следовательно, теория Ньютона для таких объектов не подходит. Однако без общей теории относительности тут ещё можно обойтись.

Затем мы занялись нейтронными звёздами, чья плотность гораздо выше, чем плотность белых карликов. Первые подробные расчёты произвели Оппенгеймер и Волков с применением общей теории относительности, и это говорит о том, что граница проходит здесь, – нейтронные звёзды и другие ещё более плотные объекты ни понять, ни объяснить без общей теории относительности нельзя.

Итак, до сих пор общая теория относительности нас удовлетворяла. Но что идёт за нейтронными звёздами? Как и для белых карликов, тут есть свои ограничения. Нейтронное давление вырождения может удерживать звезду с массой до 3,2 массы Солнца. Если при коллапсе звезды образуется масса, большая этой, то, как мы увидим в следующей главе, получится чрезвычайно странный объект – чёрная дыра. Вот здесь-то общая теория относительности и начинает нас подводить. Впрочем, чёрные дыры важны и в связи с другой проблемой: мы увидим, что они являются первым связующим звеном между квантовой теорией и общей теорией относительности.


Рекомендуем почитать
Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


Астрономия за 1 час

Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!


Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.