Мечта Эйнштейна. В поисках единой теории строения - [3]
В 1964 году Мюррей Гелл-Манн из Калифорнийского технологического института и независимо от него Георг Цвейг из Женевы предложили решение проблемы. Они предположили, что адроны состоят из трёх фундаментальных частиц, которые Гелл-Манн назвал кварками (в предложенной схеме есть и антикварки). С физической точки зрения теория была замечательной – она предсказывала все наблюдаемые частицы и позволяла свести число действительно элементарных типов адронов во Вселенной всего к трём; с таким числом справиться значительно легче. Существовала, впрочем, одна трудность – кварков никто никогда не видел. След одиночного кварка ни разу не наблюдался в пузырьковой камере, более того, ниоткуда, кроме этой теории, их существование не следовало! И всё же, несмотря на то что кварки до сих пор не обнаружены, теория осталась. В неё внесли некоторые изменения, но по сей день она лучшая из всех теорий элементарных частиц.
Итак, все элементарные частицы, из которых построена Вселенная, самые фундаментальные (насколько можно судить) составляющие материи можно разделить на два класса: лептоны и кварки. Лептон нельзя расщепить на что-то более элементарное, и уж, конечно, нельзя расщепить кварк, который к тому же до сих пор не удалось изолировать. Сейчас принято считать, что кварк в принципе изолировать нельзя.
Весь мир построен из этих различным образом сгруппированных частиц. Но если бы существовали только они, наш мир выглядел бы весьма странно: в пространстве беспорядочно носились бы бесчисленные миллиарды частиц. Нам известно, что на самом деле частицы движутся не беспорядочно, на них действуют силы, удерживающие их вместе. В природе известны четыре типа сил, два из которых проявляются внутри атомов. Атом состоит из ядра, в котором плотно упакованы протоны и нейтроны (в ядре сосредоточена почти вся масса атома), и вращающихся вокруг него электронов. В электрически нейтральном атоме число электронов равно числу протонов. Так как протоны имеют положительный заряд, а электроны – отрицательный, они удерживаются на орбите в результате электрического притяжения противоположных по знаку зарядов.
Приглядевшись к ядру попристальнее, можно заметить, что протоны располагаются очень близко друг к другу, хотя, будучи одноименно заряженными частицами, они должны были бы отталкиваться, что, кстати, на определённом расстоянии и происходит. Но есть другая сила – сильное взаимодействие, примерно в 1000 раз более мощное, чем электромагнитное. Сильное взаимодействие отличается от электромагнитного тем, что оно близкодействующее, т.е. действует только на расстоянии порядка диаметра ядра. Это означает, что при сближении два протона сначала отталкивают друг друга, а потом вдруг, на очень малом расстоянии, между ними возникает сильнейшее притяжение, удерживающее их вместе. Сильное взаимодействие проявляется не между всеми частицами, а только между парами адронов.
Третья фундаментальная сила природы внутри атомов почти не проявляется, для этого она очень слаба (в миллиард миллиардов раз слабее электромагнитных сил), хотя с ней, несомненно, знакомы все – это сила тяжести. Как и электромагнитное, гравитационное поле дальнодействующее, но отличается тем, что вызывает только притяжение (электромагнитное поле вызывает также отталкивание). Конечно, между ядром и вращающимися вокруг него электронами есть слабое гравитационное притяжение, но оно настолько мало, что по сравнению с другими силами его можно не учитывать. Это не значит, что гравитационным полем можно вовсе пренебречь; оно важно хотя бы потому, что благодаря ему мы удерживаемся на Земле. Под действием гравитационного поля и Земля вращается вокруг Солнца.
Последнее из четырёх фундаментальных взаимодействий – слабое ядерное. Оно несколько сильнее гравитационного, но гораздо слабее электромагнитного или сильного. Слабое взаимодействие (как и сильное) очень короткодействующее, но оно в отличие от сильного проявляется редко, только в некоторых типах ядерных реакций.
В поисках сути
Современный научный метод – проведение экспериментов в лаборатории – был введён Галилеем. Благодаря этому методу он смог объяснить немало явлений природы, которые оставались загадкой в течение многих столетий. Позднее Ньютон ввёл в науку математику. Он показал, что движение тел можно описать формулами, что формулы – удобный способ краткой записи физических процессов. Ньютон продемонстрировал и магию своих формул. С их помощью можно не только определить, как вели себя и двигались частицы и тела в прошлом (если известно, какие силы на них действовали), но и предсказать, что с ними случится в будущем, сколь угодно далёком.
Однако самым важным достижением Ньютона было введение понятия теории. В основе теории лежат несколько основных законов, на базе которых можно делать различные предсказания. Теория движения Ньютона, известная под названием ньютоновой механики, основана на небольшом числе простых законов, из которых можно вывести любые типы движения.
Вскоре после того, как Ньютон предложил свои теории, стали появляться и другие; представления об электричестве и магнетизме спустя много лет выкристаллизовались усилиями Максвелла в теорию электромагнетизма. В те же годы была сформулирована теория теплоты. Теперь все они называются классическими теориями.
В этой книге рассказывается о применении радиоактивных изотопов для мирных целей и возможном использовании их в военном деле. В доступной форме разъясняется из чего слагается вещество, как построены молекулы и атомы, что такое явление радиоактивности и какими свойствами обладают радиоактивные изотопы. Широта научных проблем, изучаемых с помощью изотопов, неизмерима: здесь исследования целительных свойств лекарств и открытие загадки древних статуй, анализ глубоководных морских отложений и раскрытие тайны происхождения живого и неживого, обмен веществ в микроскопической клетке и величественные проблемы происхождения вселенной. При помощи радиоактивных изотопов могут быть вскрыты интимнейшие механизмы биохимических процессов в растениях и животных.
Книга рассказывает о физиках — творцах лазеров (оптических квантовых генераторов). Над изобретением работали две группы ученых. К первой группе относятся исследователи квантовой теории поля, теории элементарных частиц, многих вопросов ядерной физики, гравитации, космогонии, ряда вопросов твердого тела. Вторая группа физиков стремилась в конечном счете создать физический прибор, опираясь на теоретический анализ.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Книга «Физики о физиках» родилась из бесед автора с нашими физиками — академиками Таммом, Леонтовичем, Кикоиным, Константиновым, Полубариновой-Кочиной, Гинзбургом, членами-корреспондентами Академии наук — Дерягиным, Регелем, Гапоновым-Греховым и многими другими. Их воспоминания о прошедшем, о зарождении и судьбе открытий и о встречах с выдающимися учеными послужили первоосновой, на которой А. Ливанова создала портреты корифеев науки — эти портреты мы и представляем читателям.
Симметрия и асимметрия в математике, искусстве, философии, астрономии, зоологии, анатомии, химии, ядерной физике — предмет волнующих открытий для всех любознательных. Почему у нарвала бивень имеет левую «резьбу»? Будут ли марсианские асимметричные вирусы пагубны для космонавтов, а земные — для марсиан? Что такое «бустрафедон» и какое это отношение имеет к двум крупнейшим научным открытиям последнего десятилетия — ниспровержению физиками закона сохранения четности и открытию биологами винтообразного строения молекулы, которая несет генетический код? Об этом и еще очень многом из правого, левого мира вы сможете прочитать в этой живой и занимательной книге.
В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.