Мечта Эйнштейна. В поисках единой теории строения - [3]

Шрифт
Интервал

В 1964 году Мюррей Гелл-Манн из Калифорнийского технологического института и независимо от него Георг Цвейг из Женевы предложили решение проблемы. Они предположили, что адроны состоят из трёх фундаментальных частиц, которые Гелл-Манн назвал кварками (в предложенной схеме есть и антикварки). С физической точки зрения теория была замечательной – она предсказывала все наблюдаемые частицы и позволяла свести число действительно элементарных типов адронов во Вселенной всего к трём; с таким числом справиться значительно легче. Существовала, впрочем, одна трудность – кварков никто никогда не видел. След одиночного кварка ни разу не наблюдался в пузырьковой камере, более того, ниоткуда, кроме этой теории, их существование не следовало! И всё же, несмотря на то что кварки до сих пор не обнаружены, теория осталась. В неё внесли некоторые изменения, но по сей день она лучшая из всех теорий элементарных частиц.

Итак, все элементарные частицы, из которых построена Вселенная, самые фундаментальные (насколько можно судить) составляющие материи можно разделить на два класса: лептоны и кварки. Лептон нельзя расщепить на что-то более элементарное, и уж, конечно, нельзя расщепить кварк, который к тому же до сих пор не удалось изолировать. Сейчас принято считать, что кварк в принципе изолировать нельзя.

Весь мир построен из этих различным образом сгруппированных частиц. Но если бы существовали только они, наш мир выглядел бы весьма странно: в пространстве беспорядочно носились бы бесчисленные миллиарды частиц. Нам известно, что на самом деле частицы движутся не беспорядочно, на них действуют силы, удерживающие их вместе. В природе известны четыре типа сил, два из которых проявляются внутри атомов. Атом состоит из ядра, в котором плотно упакованы протоны и нейтроны (в ядре сосредоточена почти вся масса атома), и вращающихся вокруг него электронов. В электрически нейтральном атоме число электронов равно числу протонов. Так как протоны имеют положительный заряд, а электроны – отрицательный, они удерживаются на орбите в результате электрического притяжения противоположных по знаку зарядов.

Приглядевшись к ядру попристальнее, можно заметить, что протоны располагаются очень близко друг к другу, хотя, будучи одноименно заряженными частицами, они должны были бы отталкиваться, что, кстати, на определённом расстоянии и происходит. Но есть другая сила – сильное взаимодействие, примерно в 1000 раз более мощное, чем электромагнитное. Сильное взаимодействие отличается от электромагнитного тем, что оно близкодействующее, т.е. действует только на расстоянии порядка диаметра ядра. Это означает, что при сближении два протона сначала отталкивают друг друга, а потом вдруг, на очень малом расстоянии, между ними возникает сильнейшее притяжение, удерживающее их вместе. Сильное взаимодействие проявляется не между всеми частицами, а только между парами адронов.

Третья фундаментальная сила природы внутри атомов почти не проявляется, для этого она очень слаба (в миллиард миллиардов раз слабее электромагнитных сил), хотя с ней, несомненно, знакомы все – это сила тяжести. Как и электромагнитное, гравитационное поле дальнодействующее, но отличается тем, что вызывает только притяжение (электромагнитное поле вызывает также отталкивание). Конечно, между ядром и вращающимися вокруг него электронами есть слабое гравитационное притяжение, но оно настолько мало, что по сравнению с другими силами его можно не учитывать. Это не значит, что гравитационным полем можно вовсе пренебречь; оно важно хотя бы потому, что благодаря ему мы удерживаемся на Земле. Под действием гравитационного поля и Земля вращается вокруг Солнца.

Последнее из четырёх фундаментальных взаимодействий – слабое ядерное. Оно несколько сильнее гравитационного, но гораздо слабее электромагнитного или сильного. Слабое взаимодействие (как и сильное) очень короткодействующее, но оно в отличие от сильного проявляется редко, только в некоторых типах ядерных реакций.

В поисках сути

Современный научный метод – проведение экспериментов в лаборатории – был введён Галилеем. Благодаря этому методу он смог объяснить немало явлений природы, которые оставались загадкой в течение многих столетий. Позднее Ньютон ввёл в науку математику. Он показал, что движение тел можно описать формулами, что формулы – удобный способ краткой записи физических процессов. Ньютон продемонстрировал и магию своих формул. С их помощью можно не только определить, как вели себя и двигались частицы и тела в прошлом (если известно, какие силы на них действовали), но и предсказать, что с ними случится в будущем, сколь угодно далёком.

Однако самым важным достижением Ньютона было введение понятия теории. В основе теории лежат несколько основных законов, на базе которых можно делать различные предсказания. Теория движения Ньютона, известная под названием ньютоновой механики, основана на небольшом числе простых законов, из которых можно вывести любые типы движения.

Вскоре после того, как Ньютон предложил свои теории, стали появляться и другие; представления об электричестве и магнетизме спустя много лет выкристаллизовались усилиями Максвелла в теорию электромагнетизма. В те же годы была сформулирована теория теплоты. Теперь все они называются классическими теориями.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.