Мечта Эйнштейна. В поисках единой теории строения - [14]
Чаплин вспоминает об обеде в Калифорнии в 1926 году, на котором присутствовали Эйнштейн со своей второй женой и двое друзей Чаплина. За обедом жена Эйнштейна «…рассказала о том утре, когда он догадался, как построить теорию относительности». Вот её рассказ: «Эйнштейн, как обычно, спустился к завтраку, но почти ни к чему не притронулся. Обеспокоенная, я спросила, в чём дело. "Дорогая, – ответил он, – мне пришла в голову великолепная мысль". Выпив кофе, он подошёл к роялю и заиграл. Время от времени он останавливался и, что-то записав, продолжал музицировать. Потом снова произнёс: "Это превосходная, великолепная мысль". Я сказала: "Да объясни в чём дело, не томи". Но он ответил: "Трудно объяснить, мне нужно поработать"».
Госпожа Эйнштейн рассказала Чаплину, что её муж играл и писал ещё с полчаса, а потом поднялся к себе в кабинет, попросив, чтобы его не беспокоили. Он провёл там две недели. «Каждый день, – вспоминала его жена, – я посылала еду в кабинет. Вечером он выходил прогуляться, а потом снова садился за работу. Наконец он спустился вниз. Он был очень бледен. "Вот", – сказал он и положил на стол два листка бумаги. Это и была его теория относительности».
Эйнштейн изложил свою теорию на трёх ближайших заседаниях Прусской академии наук в ноябре 1915 года. Позже он говорил, что это было счастливейшее время в его жизни.
Эйнштейну с самого начала не нравилась мысль Ньютона о том, что тяготение переносится дальнодействующим полем. Ньютон считал, что тяготение переносится мгновенно – если с дерева внезапно падает яблоко, то вся Вселенная моментально «узнаёт» об этом и в ней тут же происходят соответствующие изменения. Но, как следует из специальной теории относительности, ничто не может двигаться со скоростью, превышающей световую. Размышляя над этой проблемой, Эйнштейн представил себе луч света, искривляющийся при прохождении у края Солнца, и вскоре понял, что искривляется не луч, а пространство около Солнца. Материя как-то изгибает пространство, и другая материя должна двигаться в таком пространстве «естественно» – так, как мы это наблюдаем. Он решил, что наиболее естественным был бы кратчайший путь между двумя заданными точками пространства (в математике соответствующая линия называется геодезической). Иными словами, Солнце искривляет пространство вокруг себя, и планеты движутся в нём по геодезическим. Эти геодезические кажутся нам эллиптическими орбитами, но в искривлённом пространстве они представляют собой прямые линии.
Далеко не все соглашались с этими странными идеями Эйнштейна. Некоторые покидали его лекции, недовольно качая головой и бормоча: «Искривлённое пространство… Ерунда какая-то… Как это пространство может быть искривлённым? Таких как он надо держать в сумасшедшем доме».
Конечно, Эйнштейну было важно найти подтверждения своей теории, ведь просто заявить, что пространство искривлено, явно недостаточно. Теория Ньютона хорошо зарекомендовала себя, поэтому теория Эйнштейна должна быть лучше и в первом приближении не только переходить в теорию Ньютона, но и позволять получать новые результаты. Если бы теория Эйнштейна давала те же результаты, что и теория Ньютона, проку от неё было бы немного. Эйнштейн показал, что в первом приближении его теория совпадает с ньютоновой, но, кроме того, позволяет пойти ещё дальше.
Прежде чем рассмотреть возможности общей теории относительности, познакомимся поближе с представлением об искривлённом пространстве. Выведённые Эйнштейном уравнения позволяют точно определить, насколько и как именно искривлено пространство около данной массы; они также дают возможность судить, насколько искривлено пространство внутри массы. Раньше уже говорилось, что мы не можем представить себе искривлённое пространство, мы можем только прибегнуть к аналогии, рассмотрев двумерную поверхность в трёхмерном пространстве. Представьте себе туго натянутую тонкую резиновую плёнку, в центр которой положен увесистый шар, изображающий Солнце. Под действием его веса плёнка изогнётся так же, как искривляется пространство около Солнца. Маленький шарик, пущенный вокруг большого, будет двигаться по эллипсу – той же траектории, по которой движутся планеты вокруг Солнца.
Упрощённая модель искривления пространства около Солнца. Тяжёлый шар в центре изображает Солнце, а маленький – Землю
Теперь вернёмся к тем идеям Эйнштейна, которых нет в теории Ньютона. Начнём с рассмотрения траекторий планет. Из теории Ньютона следует, что планеты должны двигаться по эллипсам, и положение этих эллипсов сохраняется вечно. Однако давно было замечено, что орбита Меркурия слегка смещается. Многие астрономы полагали, что на движение Меркурия влияет другая планета, расположенная между ним и Солнцем. Но когда Эйнштейн рассчитал орбиту Меркурия, используя свою теорию, оказалось, что полученный результат немного отличается от результата Ньютона. В уравнениях Эйнштейна был дополнительный член, учёт которого показывал, что должно наблюдаться незначительное смещение орбиты в направлении большой оси; это явление носит название прецессии. Когда астрономы сравнили предсказания теории Эйнштейна с наблюдениями, оказалось, что они прекрасно согласуются. Отсюда следовал неизбежный вывод – теория Эйнштейна более совершенна. На самом деле из неё вытекает, что прецессией обладают орбиты всех планет, но наблюдать её можно только у Меркурия.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.