Математики, шпионы и хакеры. Кодирование и криптография - [5]
Глава 2. Криптография от античности до XIX века
Как мы уже говорили, криптография является древней дисциплиной, вероятно, столь же древней, как и само письменное общение. Однако это не единственно возможный способ тайной передачи информации. В конце концов, каждый текст както изображается, и если мы сделаем это изображение невидимым для всех, кроме получателя, наша цель будет достигнута. Техника сокрытия самого существования сообщения называется стеганографией, и она, вероятно, появилась примерно в то же время и по тем же причинам, что и криптография.
Греческий ученый Геродот, считающийся одним из величайших историков мира, в своей знаменитой хронике войны между греками и персами в V в. до н. э. упоминает два любопытных примера стеганографии, потребовавших значительной изобретательности. Первый пример описан в третьей книге «Истории» Геродота: Гистией, тиран города Милета, приказал побрить гонцу голову. Затем на коже головы написали сообщение, которое нужно было отправить, и подождали, когда волосы отрастут. После этого человека послали к месту назначения, в лагерь Аристагора.
Благополучно добравшись туда, посланник объяснил уловку Аристагору и снова сбрил волосы, показав долгожданное сообщение. Второй пример, если это, конечно, правда, имел большее историческое значение, поскольку это позволило спартанскому царю Демарату, сосланному в Персию, предупредить своих соотечественников о грозящем нашествии персидского царя Ксеркса. Геродот пишет об этом в седьмой книге:
«Дело в том, что Демарат не мог так просто предупредить их, поэтому он придумал вот какую хитрость: он взял пару восковых дощечек [для письма], соскоблил воск и написал планы персидского царя на деревянной поверхности. Затем он залил дощечки растопленным воском, таким образом скрыв сообщение. В итоге дощечки, выглядевшие пустыми, не могли возбудить никаких подозрений у дорожных стражей.
Когда дощечки доставили в Лакедемон (Спарта), лакедемоняне долго не могли разгадать секрет, пока, наконец, как я это понимаю, Горго […] не предложила соскоблить воск с дощечек, потому что тогда, по ее словам, на дереве обнаружится сообщение».
Стеганографический метод, выдержавший испытание временем, — это невидимые чернила. Известные по многим рассказам и фильмам, такие чернила содержат материалы, как правило, органического происхождения с высоким содержанием углерода: лимонный сок, растительные соки и даже человеческую мочу, поэтому они имеют тенденцию темнеть при умеренном нагревании, например, над пламенем свечи.
Польза стеганографии бесспорна, хотя этот способ совершенно невыгоден при большом количестве сообщений. Более того, сам по себе этот метод имеет существенный недостаток: если сообщение все-таки будет перехвачено, его содержание сразу же станет известным. По этой причине стеганография в основном используется совместно с методами криптографии как средство усиления безопасности сообщений наивысшей секретности.
Как показывают приведенные примеры, угроза вооруженного конфликта была серьезным стимулом для защиты передаваемой информации. Поэтому не удивительно, что такие воинственные люди, как спартанцы, бывшие, если верить Геродоту, мастерами стеганографии, были также пионерами в развитии криптографии.
Во время конфликта между Афинами и Спартой для контроля над Пелопоннесом часто использовалась скитала — прибор, состоящий из цилиндра и обмотанной вокруг него по спирали узкой полоски бумаги, на которой писалось сообщение. Хотя используемый метод (то есть алгоритм шифрования) был известен противнику, не зная точных размеров скиталы, было чрезвычайно трудно расшифровать перехваченное сообщение. Толщина и длина скиталы были, в сущности, ключом к этой системе шифрования. После разматывания бумажной ленты прочитать сообщение было невозможно. На рисунке ниже передаваемое сообщение (М) выглядит так: A message encoded with a scytale («Сообщение, закодированное с помощью скиталы»), но после разматывания бумажной ленты сообщение превратилось в тарабарщину (С): anh mca eos sdc sey adt gwa eil ete.
* * *
КРОШЕЧНЫЕ БУКВЫ
В годы холодной войны герои шпионских триллеров часто использовали крошечные микрофильмы для пересылки сообщений, чтобы их было невозможно прочитать невооруженным глазом. Этот стеганографический метод, названный «микроточки», был разработан на несколько лет раньше, в Германии во время Второй мировой войны. Фотография текста сообщения уменьшалась до размеров точки, а затем прикреплялась к безобидному письму в качестве одного из многих типографских символов.
* * *
Использование скиталы основано на криптографическом методе, известном как перестановочное шифрование, когда буквы сообщения переставляются местами.
Чтобы получить представление о силе этого метода, рассмотрим простой пример перестановки всего трех букв: А, О и R. Быстрая проверка без каких-либо расчетов показывает, что они могут быть переставлены шестью различными способами:
AOR, ARO, OAR, ORA, ROA и RAO.
В абстрактных терминах процесс выглядит следующим образом: как только одна из трех возможных букв поставлена на первое место, что дает нам три различных возможности, остаются еще две буквы, которые в свою очередь могут быть переставлены двумя различными способами. Таким образом, общее количество составит 3 x 2 = 6 способов. В случае более длинного сообщения, например, из 10 букв, число возможных перестановок составит 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1. Такое произведение в математике записывается как 10! и дает число 3 628 800. В общем случае для сообщения из
Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий.
Диалоги о математике, предлагаемые вниманию советских читателей, первоначально опубликованные в некоторых физических и философских журналах, впоследствии составили книжку, изданную на венгерском, немецком, английском и других европейских языках. И статьи и сборник вызвали большой интерес среди широких кругов читателей не только благодаря оригинальной форме изложения, но и вследствие довольно глубокой трактовки методологических вопросов математики. Книгу читали не только математики, физики, биологи, инженеры, но и школьники.
Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах.
Классическая книга основателя теории фракталов, известного американского математика Б. Мандельброта, которая выдержала за рубежом несколько изданий и была переведена на многие языки. Перевод на русский язык выходит с большим опозданием (первое английское издание вышло в 1977 г.). За прошедший период книга совсем не устарела и остается лучшим и основным введением в теорию фракталов и фрактальную геометрию. Написанная в живой и яркой манере, она содержит множество иллюстраций (в том числе и цветных), а также примеров из различных областей науки. Для студентов и аспирантов, физиков и математиков, инженеров и специалистов.
Знание математики приобретает особое значение в нашу цифровую эпоху. Рассказывая о прошлом, настоящем и будущем математической мысли и о первооткрывателях важнейших математических законов, известный австрийский ученый и популяризатор науки Рудольф Ташнер посвящает нас не только в тайны цифр и чисел, но и шире — в тайны познания. «Из великого множества историй о якобы безмерной власти чисел я отдал предпочтение тем, в которых проводится идея о том, что числа не просто оказались у людей под рукой.
Если вы хотите поразить одноклассников молниеносным решением квадратных уравнений [КУ], давайте развлечемся.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.