Математики, шпионы и хакеры. Кодирование и криптография - [33]

Шрифт
Интервал

Но зато число фотонов, поляризованных по диагонали, в два раза больше, чем с горизонтальной поляризацией. Важно подчеркнуть, что трудность определения поляризации фотона заключается не в каких-то технологических или теоретических проблемах, которые могут быть устранены в будущем; трудность является следствием самой природы мира частиц. Если использовать этот эффект надлежащим образом, то можно создать совершенно неуязвимый шифр, «святой грааль» криптографии.


Неуязвимый шифр

В 1984 г. американец Чарльз Беннет и канадец Жиль Брассар выдвинули идею системы шифрования на основе передачи поляризованных фотонов. Сначала отправитель и получатель договариваются, как разным поляризациям поставить в соответствие 0 или 1. В нашем примере это будет функцией двух видов поляризации: первый вид, называемый прямолинейной поляризацией и обозначаемый символом +, где 1 соответствует вертикальной поляризации

, а 0 — горизонтальной
, второй вид, называемый диагональной поляризацией и обозначаемый символом х, ставит в соответствие 1 диагональную поляризацию слева направо вверх
, а 0 — диагональную поляризацию слева направо вниз
.

Например, сообщение 0100101011 будет передано следующим образом:



Если шпион перехватит передачу, ему придется использовать фильтр с фиксированной ориентацией х:



Как мы видим, не зная изначального вида поляризации, шпион не может извлечь полезную информацию из поляризации, определенной фильтром. Даже зная правило соответствия 0 и 1, используемое отправителем и получателем, шпион будет ошибаться в трети из случаев, в которых вид поляризации выбирается случайным образом (в таблице показаны все возможные комбинации при описанных условиях). Однако проблема заключается в том, что получатель находится не в лучшем положении, чем шпион.

Хотя отправитель и получатель могут обойти эту проблему, послав друг другу последовательность видов поляризаций с помощью какого-то защищенного метода, например, RSA шифрования, но тогда шифр будет уязвим для гипотетических квантовых компьютеров.

Чтобы преодолеть это последнее препятствие, Брассару и Беннету пришлось усовершенствовать свой метод. Если читатель помнит, ахиллесовой пятой полиалфавитных шифров, таких как квадрат Виженера, являлось использование коротких повторяющихся ключей, из-за которых в шифре возникали закономерности, что создавало небольшую, но достаточную возможность для криптоаналитика взломать шифр. Но что было бы, если бы ключ представлял собой случайный набор символов и был длиннее, чем само послание, а каждое сообщение, даже самое незначительное, для большей безопасности было бы зашифровано другим ключом? Тогда бы у нас получился неуязвимый шифр.

Первым человеком, предложившим использовать полиалфавитный шифр с уникальным ключом, был Джозеф Моборн. Вскоре после Первой мировой войны, будучи начальником службы связи американского криптографического отдела, Моборн придумал блокнот с ключами, каждый из которых содержал более 100 случайных символов. Такие блокноты выдавались отправителю и получателю с инструкцией уничтожать использованный ключ и переходить к следующему. Эта система, известная как шифрблокнот одноразового назначения, является, как мы уже говорили, неуязвимой, и это можно доказать математически. И действительно, самые секретные послания между главами государств шифруются с помощью этого метода.

Если одноразовые шифры блокнота так безопасны, почему же они не используются повсеместно? Почему же мы так беспокоимся из-за квантовых компьютеров и даже занимаемся манипуляциями с фотонами?

Оставив в стороне технические трудности генерации тысяч случайных одноразовых ключей для шифрования такого же количества сообщений, шифрблокнот одноразового назначения имеет такой же недостаток, как и другие классические алгоритмы шифрования: проблему распределения ключей, которую пытается решить современная криптография.



Однако передача информации с помощью поляризованных фотонов является идеальным способом безопасного обмена уникальными ключами. Но прежде чем передавать сообщение, необходимо сделать следующее.

1. Сначала получателю посылают случайную последовательность нулей и единиц через различные, случайным образом выбранные фильтры: вертикальные

, горизонтальные
, и диагональные
.

2. Затем получатель измеряет поляризацию полученных фотонов, случайным образом чередуя прямолинейный (+) и диагональный (х) виды поляризации. Так как он не знает последовательности фильтров, используемых отправителем, большая часть нулей и единиц будет определена неправильно.

3. Наконец, отправитель и получатель связываются друг с другом в любой удобной им форме, не беспокоясь о безопасности канала, и обмениваются следующей информацией: во-первых, отправитель объясняет, какой вид поляризации — прямолинейный или диагональный — нужно использовать для каждого фотона, не раскрывая самой поляризации фотона (то есть не говоря, какой именно использовался фильтр). Со своей стороны получатель сообщает, в каких случаях он правильно определил вид. Как видно из предыдущей таблицы, если у отправителя и получателя виды поляризации совпали, можно быть уверенным, что нули и единицы переданы правильно. Наконец, уже в частном порядке каждый из них отбрасывает биты, соответствующие фотонам, для которых получатель неправильно определил вид поляризации.


Еще от автора Жуан Гомес
Когда прямые искривляются. Неевклидовы геометрии

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий.


Рекомендуем почитать
Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.