Математики, шпионы и хакеры. Кодирование и криптография - [11]
Подробный пример
Вот как встречаются буквы латинского алфавита — от наибольшей до наименьшей частоты — в текстах на английском языке: ETAOINSHRDLCUMWFGYPBVKJXQZ. Частота появления (в процентах) каждой буквы показана в следующей таблице.
Если сообщение было зашифровано с использованием шифра подстановки, как те, что описаны выше, его можно расшифровать в соответствии с относительной частотой, с которой встречаются буквы исходного сообщения. Достаточно посчитать частоту появления каждой зашифрованной буквы и сравнить ее с таблицей частот в языке, на котором сообщение было написано. Так, если буква J чаще всего встречается в зашифрованном тексте, она, скорее всего, соответствует букве Е в оригинальном сообщении (в случае английского языка). Если вторая по частоте появления в зашифрованном тексте будет буква Z, те же рассуждения приводят нас к выводу, что ей, скорее всего, соответствует буква Т. Криптоанализ завершается повторением процесса для всех букв зашифрованного текста.
Очевидно, что частотный метод не всегда может быть так легко применим. Частоты, указанные в таблице, справедливы лишь в среднем. В коротких текстах, таких как Visit the zoo kiosk for quiz tickets («Билеты викторины продаются в кассе зоопарка»), относительная частота появления букв сильно отличается от частоты, характерной для языка в целом. По сути, для текстов, содержащих менее 100 символов, такой простой анализ редко бывает полезен. Частотный анализ, однако, не ограничивается только изучением букв. Как мы видели, маловероятно, что в короткой криптограмме наиболее часто встречающейся буквой будет Е, но с большей уверенностью можно сказать, что пять наиболее часто встречающихся букв, скорее всего, будут А, Е, I, О и Т, хотя мы и не знаем, каким именно символам они соответствуют. В английском языке А и I никогда не появляются в паре, в то время как другие буквы могут. Более того, независимо от длины текста, гласные, как правило, чаще появляются в начале и в конце группы других букв, а согласные чаще встречаются с гласными или в коротких словах. Таким образом, нам, возможно, удастся отличить Т от А, Е, I и О. После успешной расшифровки некоторых букв в криптограмме появятся слова, в которых осталось расшифровать только один или два символа, что позволит нам строить гипотезы, каким буквам эти символы могут соответствовать. Скорость расшифровки увеличивается с количеством разгаданных букв.
* * *
ШЕРЛОК ХОЛМС, КРИПТОАНАЛИТИК
Расшифровка с использованием частотного анализа — очень драматичный метод, который привлекал внимание большого количества авторов. Возможно, самая известная история, основанная на криптоанализе тайного послания, описана Эдгаром Алланом По в 1843 г. в рассказе «Золотой жук». В Приложении содержится подробный разбор вымышленного послания, зашифрованного Эдгаром По, и его блестящая расшифровка с использованием частотного анализа. Другие писатели, такие как Жюль Верн и Артур Конан Дойл, использовали подобные идеи, чтобы добавить драматизма в сюжеты своих произведений. Герой рассказа Дойла «Пляшущие человечки», Шерлок Холмс, также сталкивается с шифром подстановки, что заставляет детектива обратиться к частотному анализу. Более 1000 лет спустя гениальная идея Аль-Кинди все еще привлекает людей своей красотой.
Первое из закодированных сообщений, которые Шерлок Холмс должен был расшифровать в рассказе «Пляшущие человечки». Мы не будем его здесь расшифровывать, чтобы не открывать всех секретов будущим читателям книги. Добавим только, что флажки у танцующих человечков представляют собой важный элемент шифра.
8 февраля 1587 г. Мария Стюарт, королева Шотландии, была обезглавлена в замке Фотерингей после признания ее виновной в государственной измене. Судебное разбирательство, приведшее к такому суровому приговору, установило, что Мария, вне всяких сомнений, была в сговоре с группой католических аристократов, возглавляемой молодым Энтони Бабингтоном. В их планы входило убийство английской королевы Елизаветы I и возведение Марии на трон католического царства, охватывающего Англию и Шотландию. Решающие доказательства были добыты контрразведкой Елизаветы во главе с лордом Уолсингемом. Из переписки между Марией и Бабингтоном стало ясно, что молодая шотландская королева знала о жестоком плане и одобрила его. Эти письма были зашифрованы с помощью алгоритма, который использовал и шифры, и коды: не только одни буквы заменялись другими, но и вместо некоторых общеупотребительных слов использовались специальные символы. Шифроалфавит Марии представлен ниже:
За исключением того, что буквы заменялись символами, шифр Марии ничем не отличался от любых других, которые криптографы во всем мире использовали в течение многих столетий. Молодая королева и ее сообщники были убеждены, что шифр надежен, но, к сожалению для них, лучший криптоаналитик Елизаветы, Томас Фелиппес, был экспертом в частотном анализе и смог расшифровать письма Марии без особых трудностей. Провал того, что стало известно как Заговор Бабингтона, показал правительствам и тайным агентам всей Европы, что обычный алгоритм шифра подстановки уже не безопасен. Криптографы оказались бессильными перед новыми методами расшифровки.
Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.