Математика в занимательных рассказах - [34]

Шрифт
Интервал

Заглавие рукописи неизвестно, так как первый лист не сохранился. О характере же труда и его назначении говорится в кратком «вступлении» следующее:

«Арифметический расчет может быть прилагаем к разным увеселительным занятиям, играм, шуткам и т. п. Многие так называемые фокусы (подчеркнуто в рукописи) основываются на числовых соображениях, между прочим и производимые при посредстве обыкновенных игральных карт, где принимается в расчет или число самих карт, или число очков, представляемых теми или другими картами, или и то и другое вместе. Некоторые задачи, в решение которых должны входить самые громадные числа, представляют факты любопытные и дают понятие об этих превосходящих всякое воображение числах. Мы вводим их в эту дополнительную часть арифметики. Некоторые вопросы для разрешения их требуют особой изворотливости ума и могут быть решаемы, хотя с первого взгляда кажутся совершенно нелепыми и противоречащими здравому смыслу, как, например, приведенная здесь, между прочим, задача под заглавием „Хитрая продажа яиц“. Прикладная практическая часть арифметики требует иногда не только знания теоретических правил, излагаемых в чистой арифметике, но и находчивости, приобретаемой через умственное развитие при знакомстве с различными сторонами не только дел, но и безделиц, которым поэтому дать здесь место мы сочли не излишним».

Сочинение разбито на 20 коротких ненумерованных глав, имеющих каждая особый заголовок — в стиле сходного по содержанию старинного труда Баше-де-Мезирьяка «Занимательные и приятные задачи», единственного сборника арифметических развлечений, с которым наш поэт мог быть знаком. Первые главы носят следующие заголовки: «Так называемые магические квадраты», «Угадывание задуманного числа от 1 до 30», «Угадывание втайне распределенных сумм», «Задуманная втайне цифра, сама по себе обнаруживающаяся», «Узнавание вычеркнутой цифры» и т. п. Затем следует ряд карточных фокусов арифметического характера. После них— любопытная глава «Чародействующий полководец и арифметическая армия» (оригинальный, незаимствованный сюжет); умножение с помощью пальцев, представленное в форме анекдота; перепечатанная нами выше задача с продажей яиц. Предпоследняя глава «Недостаток в пшеничных зернах для 64 клеток шахматной доски» рассказывает старинную легенду об изобретателе шахматной игры.

Наконец, 20-я глава: «Громадное число живших на земном шаре его обитателей» заключает очень любопытный подсчет. «Предположим, что первоначально от одной пары людей произошло две пары, что от каждой из этих пар произошло по две пары, и потом каждая пара производит две пары. По этому предположению размножение на земле людей шло в геометрической прогрессии: 1, 2, 4, 8,16, 32… Возьмем столько членов этой прогрессии, сколько могло перейти человеческих поколений в течение 7376 лет, насчитываемых от сотворения мира [по библейскому исчислению; отсюда выясняется дата рукописи: 1869 г.]. Положим на каждое поколение 50 лет». Насчитывая всех поколений, начиная от первой пары человеческих существ, 140 и беря 140 членов прогрессии, автор приходит к выводу, что число всех живших на земле людей достигает 4 септильонов. «Половину из этого числа отбросим, принимая в соображение, что многие из родившихся умирают в младенчестве… Значит, останемся только при двух септильонах». Септильоном Бенедиктов называет единицу с 42 нулями.

Далее, вес этого количества людей — «160 септильонов фунтов» — он сопоставляет с «весом» земного шара, который принимает в 3>1/>2 квадрильона фунтов (вместо 14 квадрильонов).

Результат получается поистине разительный: общий вес всех прежде живших людей превышает вес, земного шара в 45 триллионов раз. Исправленный расчет дал бы 10 триллионов, что, конечно, мало меняет дело. «Это показывает, заключает автор, что один и тот же вещественный материал, из которого формировались телесные составы живших на свете людей, был в обороте по крайней мере 45 триллионов раз, и за каждую вещественную частицу, перебывавшую в различных живых человеческих телах, могли бы спорить 45 триллионов индивидуумов».

Результат этот станет еще более поразителен, если принять в расчет, что человечество существует на земном шаре не 7 тысяч лет, а около полумиллиона. Далее, надо иметь в виду, что не вся масса земного шара участвовала в «формировании телесных составов живших на свете людей», а только масса поверхностного слоя нашей планеты, составляющего незначительную часть всего объема Земли. Наконец, в споре за «каждую вещественную частицу, перебывавшую в живых телах», должно было предъявить свои права и бесчисленное множество животных, населявших нашу планету, начиная с древнейших геологических эпох…

Все эти ошеломляющие выводы, однако, совершенно нереальны. Они основаны на грубо ошибочном допущении, что каждая пара людей, жившая на Земле, производила две пары. В действительности же огромное число людей умирало, не успев оставить никакого потомства. Вспомним хотя бы о детской смертности, уносящей даже в наше время так много обитателей Земли; в отдаленные времена смертность детей была, без сомнения, еще значительнее. Это совершенно опрокидывает приведенные раньше соображения и расчеты. Правильный расчет дает для численности всего прежде жившего человечества цифру порядка только нескольких десятков биллионов. Масса такого числа людей составляет лишь около одной десятимиллиардной доли массы нашей планеты. При равномерном покрытии земного шара подобный объем образовал слой толщиною, примерно, в 1–2 десятых доли миллиметра. Сказанное даже отдаленно непохоже на необычайную картину, нарисованную Бенедиктовым.


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Развлечения со спичками

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.


Физика на каждом шагу

Одно из лучших классических пособий по физике.Занимательные рассказы, поучительные опыты, интересные факты научат любознательного читателя замечать простейшие физические явления и понимать их природу.


Научные фокусы и загадки

«Научные фокусы и загадки» — это увлекательная коллекция хитрых вопросов, занимательных задач, интересных загадок, головоломок, фокусов и игр. Эта книга для веселых, находчивых и сообразительных читателей!